MHB Irreducible polynomial/Splitting field

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $f(x)=x^4+16 \in \mathbb{Q}[x]$.
  1. Split $f(x)$ into a product of first degree polynomials in $\mathbb{C}[x]$.
  2. Show that $f(x)$ is an irreducible polynomial of $\mathbb{Q}[x]$.
  3. Find the splitting field $E$ of $f(x)$ and the degree of the extension $[E:\mathbb{Q}]$.

I have done the following:
  1. $f(x)=(x^2-(4i)^2)(x^2+(4i)^2)=(x-2\sqrt{i})(x+2\sqrt{i})(x-2\sqrt[3]{i})(x+2 \sqrt[3]{i})=(x-2 e^{\pi i/4})(x+2 e^{\pi i /4})((x-2 e^{\pi i/6})(x+2e^{\pi i/6})$

    Is it correct?? (Wondering)
  2. $f(x)$ is irreducible in $\mathbb{Q}$.
    If it were not irreducible, then it could be written as a product of polynomials of $\mathbb{Q}[x]$ as followed:
    • It can be written as a product of four first degree polynomials:
      $f(x)=(x-2\sqrt{i})(x+2\sqrt{i})(x-2\sqrt[3]{i})(x+2 \sqrt[3]{i})$
      But the coefficients are not in $\mathbb{Q}$, So, it cannot be written in that way.
    • It can be written as a product of two second degree polynomials:
      $f(x)=(x^2-(4i)^2)(x^2+(4i)^2)$
      But the coefficients are not in $\mathbb{Q}$, So, it cannot be written in that way.
    • It can be written as a product of a first degree and a third degree polynomial:
      $f(x)=(x-2\sqrt{i})\left [(x+2\sqrt{i})(x^2-16)\right ] \\ =(x-2\sqrt{i}) (x^3-16x+2\sqrt{i} x^2-32\sqrt{i})$
      But the coefficients are not in $\mathbb{Q}$, So, it cannot be written in that way.
    Is it correct?? (Wondering)
  3. The splitting field is $E=\mathbb{Q}(\pm 2 e^{\pi i/4}, \pm 2 e^{\pi i/6})=\mathbb{Q}(e^{\pi i/4}, e^{\pi i/6})$

    Is it correct?? (Wondering)$Irr(e^{\pi i/4}, \mathbb{Q})=x^4+1$

    $[\mathbb{Q}(e^{\pi i/4}):\mathbb{Q}]=4$

    How can I continue to find $[\mathbb{Q}(e^{\pi i/4}, e^{\pi i/6}): \mathbb{Q}]$?? (Wondering)
 
Physics news on Phys.org
Hi,

I think is everything OK.

Remember that $[\Bbb{Q}(e^{\pi i/6},e^{\pi i / 4}) \ : \ \Bbb{Q}]=[\Bbb{Q}(e^{\pi i / 4}) (e^{\pi i/6})\ : \ \Bbb{Q}(e^{\pi i /4})][\Bbb{Q}(e^{\pi i / 4}) \ : \ \Bbb{Q}]$

So you have to compute $Irr(e^{\pi i / 6},\Bbb{Q}(e^{\pi i / 4}))$
 
Fallen Angel said:
Remember that $[\Bbb{Q}(e^{\pi i/6},e^{\pi i / 4}) \ : \ \Bbb{Q}]=[\Bbb{Q}(e^{\pi i / 4}) (e^{\pi i/6})\ : \ \Bbb{Q}(e^{\pi i /4})][\Bbb{Q}(e^{\pi i / 4}) \ : \ \Bbb{Q}]$

So you have to compute $Irr(e^{\pi i / 6},\Bbb{Q}(e^{\pi i / 4}))$

$e^{\pi i / 6}$ is a root of $x^6+1$, right?? (Wondering)

But how could I find $Irr(e^{\pi i / 6},\Bbb{Q}(e^{\pi i / 4}))$ ?? (Wondering)
 
Try to factor $x^{6}+1$.

Is the same idea when you factor it over $\Bbb{Q}$, but this time the coefficients of your polynomials are in $\Bbb{Q}(e^{ \pi i/ 4})=\{a+be^{ \pi i/4} \ : \ a,b\in \Bbb{Q}\}$.

This carries a lot of work, but I have no a better idea. :(
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
48
Views
4K
  • · Replies 26 ·
Replies
26
Views
706
  • · Replies 16 ·
Replies
16
Views
4K
Replies
6
Views
3K
Replies
6
Views
1K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K