Irreducible polynomial/Splitting field

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field
Click For Summary
SUMMARY

The polynomial $f(x) = x^4 + 16$ is irreducible over $\mathbb{Q}[x]$ as it cannot be factored into polynomials with rational coefficients. The splitting field of $f(x)$ is $E = \mathbb{Q}(\pm 2 e^{\pi i/4}, \pm 2 e^{\pi i/6})$, and the degree of the extension $[E:\mathbb{Q}]$ can be determined by calculating $[\mathbb{Q}(e^{\pi i/4}, e^{\pi i/6}): \mathbb{Q}]$. The irreducible polynomial for $e^{\pi i/4}$ over $\mathbb{Q}$ is $x^4 + 1$, leading to $[\mathbb{Q}(e^{\pi i/4}):\mathbb{Q}] = 4$.

PREREQUISITES
  • Understanding of irreducible polynomials in field theory
  • Familiarity with splitting fields and field extensions
  • Knowledge of complex numbers and their exponential forms
  • Experience with polynomial factorization over $\mathbb{Q}$
NEXT STEPS
  • Learn how to compute the degree of field extensions, specifically $[\mathbb{Q}(e^{\pi i/6}): \mathbb{Q}(e^{\pi i/4})]$
  • Study the factorization of $x^6 + 1$ over $\mathbb{Q}(e^{\pi i/4})$
  • Explore the properties of cyclotomic fields and their extensions
  • Investigate the relationship between roots of unity and irreducible polynomials
USEFUL FOR

Mathematicians, algebraists, and students studying field theory, particularly those focusing on polynomial irreducibility and splitting fields.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $f(x)=x^4+16 \in \mathbb{Q}[x]$.
  1. Split $f(x)$ into a product of first degree polynomials in $\mathbb{C}[x]$.
  2. Show that $f(x)$ is an irreducible polynomial of $\mathbb{Q}[x]$.
  3. Find the splitting field $E$ of $f(x)$ and the degree of the extension $[E:\mathbb{Q}]$.

I have done the following:
  1. $f(x)=(x^2-(4i)^2)(x^2+(4i)^2)=(x-2\sqrt{i})(x+2\sqrt{i})(x-2\sqrt[3]{i})(x+2 \sqrt[3]{i})=(x-2 e^{\pi i/4})(x+2 e^{\pi i /4})((x-2 e^{\pi i/6})(x+2e^{\pi i/6})$

    Is it correct?? (Wondering)
  2. $f(x)$ is irreducible in $\mathbb{Q}$.
    If it were not irreducible, then it could be written as a product of polynomials of $\mathbb{Q}[x]$ as followed:
    • It can be written as a product of four first degree polynomials:
      $f(x)=(x-2\sqrt{i})(x+2\sqrt{i})(x-2\sqrt[3]{i})(x+2 \sqrt[3]{i})$
      But the coefficients are not in $\mathbb{Q}$, So, it cannot be written in that way.
    • It can be written as a product of two second degree polynomials:
      $f(x)=(x^2-(4i)^2)(x^2+(4i)^2)$
      But the coefficients are not in $\mathbb{Q}$, So, it cannot be written in that way.
    • It can be written as a product of a first degree and a third degree polynomial:
      $f(x)=(x-2\sqrt{i})\left [(x+2\sqrt{i})(x^2-16)\right ] \\ =(x-2\sqrt{i}) (x^3-16x+2\sqrt{i} x^2-32\sqrt{i})$
      But the coefficients are not in $\mathbb{Q}$, So, it cannot be written in that way.
    Is it correct?? (Wondering)
  3. The splitting field is $E=\mathbb{Q}(\pm 2 e^{\pi i/4}, \pm 2 e^{\pi i/6})=\mathbb{Q}(e^{\pi i/4}, e^{\pi i/6})$

    Is it correct?? (Wondering)$Irr(e^{\pi i/4}, \mathbb{Q})=x^4+1$

    $[\mathbb{Q}(e^{\pi i/4}):\mathbb{Q}]=4$

    How can I continue to find $[\mathbb{Q}(e^{\pi i/4}, e^{\pi i/6}): \mathbb{Q}]$?? (Wondering)
 
Physics news on Phys.org
Hi,

I think is everything OK.

Remember that $[\Bbb{Q}(e^{\pi i/6},e^{\pi i / 4}) \ : \ \Bbb{Q}]=[\Bbb{Q}(e^{\pi i / 4}) (e^{\pi i/6})\ : \ \Bbb{Q}(e^{\pi i /4})][\Bbb{Q}(e^{\pi i / 4}) \ : \ \Bbb{Q}]$

So you have to compute $Irr(e^{\pi i / 6},\Bbb{Q}(e^{\pi i / 4}))$
 
Fallen Angel said:
Remember that $[\Bbb{Q}(e^{\pi i/6},e^{\pi i / 4}) \ : \ \Bbb{Q}]=[\Bbb{Q}(e^{\pi i / 4}) (e^{\pi i/6})\ : \ \Bbb{Q}(e^{\pi i /4})][\Bbb{Q}(e^{\pi i / 4}) \ : \ \Bbb{Q}]$

So you have to compute $Irr(e^{\pi i / 6},\Bbb{Q}(e^{\pi i / 4}))$

$e^{\pi i / 6}$ is a root of $x^6+1$, right?? (Wondering)

But how could I find $Irr(e^{\pi i / 6},\Bbb{Q}(e^{\pi i / 4}))$ ?? (Wondering)
 
Try to factor $x^{6}+1$.

Is the same idea when you factor it over $\Bbb{Q}$, but this time the coefficients of your polynomials are in $\Bbb{Q}(e^{ \pi i/ 4})=\{a+be^{ \pi i/4} \ : \ a,b\in \Bbb{Q}\}$.

This carries a lot of work, but I have no a better idea. :(
 

Similar threads

Replies
48
Views
5K
  • · Replies 26 ·
Replies
26
Views
957
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K