JesseM said:
Do you just mean that local properties of the particle are affected by local properties of the detector it comes into contact with? If so, no, this cannot lead to any violations of the Bell inequalities.
I'll go through the computer model (virtual detectors) I used in your question below. I'll also explain the empirical based assumptions used.
JesseM said:
Suppose the experimenters each have a choice of three detector settings, and they find that on any trial where they both chose the same detector setting they always got the same measurement outcome.
Naturally you get consistency between experiments, at least statistically. It really would be weird otherwise. But real experiments are limited to 2 setting choices at a time. The 3rd setting is a counterfactual from previous experiments. I doubt you've read the unfair coin example, an unfair coin with a tiny adjuster to set so it match a second 85% of the time, but by defining a 3rd simultaneous setting you are putting very severe non-random constraints on how it relates to 2 other settings. Both completely correlated with 1 and totally uncorrelated with the other, yet expecting this nonrandom choice to match stochastically with both based on statistical profiles pulled from previous experiments without such constraints. Neither classical nor QM mechanism allows this. Only QM is not explicitly time dependent so it's much harder to see the mechanism counterfactually in QM.
JesseM said:
Then in a local hidden variables model where you have some variables associated with the particle and some with the detector, the only way to explain this is to suppose the variables associated with the two particles predetermined the result they would give for each of the three detector settings; if there was any probabilistic element to how the variables of the particles interacted with the state of the detector to produce a measurement outcome, then there would be a finite probability that the two experimenters could both choose the same detector setting and get different outcomes. Do you disagree?
Finite, maybe. Though there's at least some reason to believe nature is not finite. But assuming finite, I can also calculate the odds that all the air in the half of the room you are in spontaneously ends up in the other half of the room. The odds of it happening are indeed finite, but I'm not holding my breath just in case.
JesseM said:
What do you mean by "assigning" coordinate systems? Coordinate systems are not associated with physical objects, they are just aspects of how we analyze a physical situation by assigning space and time coordinates to different events. Any physical situation can be analyzed using any coordinate system you like, the choice of coordinate system cannot affect your predictions about coordinate-invariant physical facts.
Quiet simple cases exist were quantities are not coordinate-invariant, and a very important one involves basic vector products. Consider:
http://www.vias.org/physics/bk1_09_05.html
[PLAIN]http://www.vias.org/physics/bk1_09_05.html said:
The[/PLAIN] operation's result depends on what coordinate system we use, and since the two versions of R have different lengths (one being zero and the other nonzero), they don't just represent the same answer expressed in two different coordinate systems. Such an operation will never be useful in physics, because experiments show physics works the same regardless of which way we orient the laboratory building! The useful vector operations, such as addition and scalar multiplication, are rotationally invariant, i.e., come out the same regardless of the orientation of the coordinate system.
It states it "will never be useful in physics", yet both the Born rule and Malus Law involve just such a vector product if you presume there is some underlying mechanism. Given just a single vector magnitude it's not even possible to uniquely identify the vectors that it was derived from.
JesseM said:
Anyway, your description isn't at all clear, could you come up with a mathematical description of the type of "hv model" you're imagining, rather than a verbal one?
My model is based on a computer model, virtual emitters and detectors.
Assumptions (I'll use photons and polarizations for simplicity):
1) A photon has a single unique default polarization, which is only unique in that upon meeting a polarizer at the same polarization it effectively has a 100% chance of passing that polarizer.
2) The odds that a photon will pass through a polarizer that is offset from that photon default polarization is defined by cos^2(theta), Malus Law.
3) A bit field is set to predefine passage through a polarizer it meats at various settings, with the odds of a bit being predefined as 1 (for passage) determined by a random number generator with a min/max of 0/1 that rolls less than cos^2(theta) when created at the emitter.
4) A random number with a min/max of 0/359.5, rounded to half degree increments, predefines the default polarization at the emitter. These can be rotated with impunity.
For computer modeling a default polarization and a bit field is set. I used 180 bit field, which predefines passage or not for each 1/2 degree over 90 degrees, reversed for every other 90 degrees. The odds that a 10 degree bit, for instance, will be predefined 1 is cos^2(10). Anticorrelated photons are simply flipped 180 degrees, with the same bit field. The photons can be randomly generated and written to a text file. I have lots of improvements to try, but haven't got to it yet.
The formula, when a photon meets a detector is simply (polarizer1 - photon1) and (polarizer2 - photon2) at the other end. Then simply count that many bits into the bit field to see if a detection occurs. No Malus Law used here because it's built into the statistics of the bit field. Detections are returned before comparisons are made between polarizer1 and polarizer2.
This only works to match QM predictions if 1 of the polarizer settings is defined to be 0. Yet you can rotate the photons coming from the emitter with impunity, without effecting the coincidence statistics. So there exist no unique physical state at certain rotations. Neither polarizer directly references the setting of the other polarizer. Only the difference between the photons default polarization and the polarizer setting it actually comes in contact with is used to define detections.
The 0 angle is the biggest issue. You could also add another 719 180 bit fields, for 1/2 degree increments, to undo the 0 degree requirement on one of the detector. This would blow up into a huge, possibly infinite, number of variables in real world conditions, but if quantum computers work as well as expected this shouldn't be an issue.
I'm not happy with this, and have a lot of improvements to try, when I get to it. Including using predefined ranges instead of bit fields, and non-commutative vector rotations in an attempt to remove the coordinate rotations as I change a certain detector setting. I have my doubts about these.