I Is e^pi a unique transcendental, or perhaps not transcendental?

  • I
  • Thread starter Thread starter cc math
  • Start date Start date
AI Thread Summary
The discussion centers on the relationship between e^pi and the golden ratio, as discovered by Ramanujan, which involves an infinite nested arithmetic series. This raises the question of whether transcendental numbers can be expressed as finite algebraic expressions, contradicting traditional definitions by mathematicians like Euler. Participants explore the possibility of subgroups within transcendental numbers, distinguishing those expressible through finite algebraic forms from those requiring infinite series. Ramanujan's findings suggest a unique classification for e^pi, particularly in relation to the silver ratio. The conversation invites further insights into the nature of transcendental numbers and their mathematical representations.
cc math
Messages
1
Reaction score
0
Ramanujan discovered a relationship between e^pi and the golden ratio which involved an infinite nested arithmetic series of repeating term.
Argument: Since such a series is the equivalent of a simple finite algebraic and geometric expression, there can be presented an algebraic expression of a transcendental number which is equal to an algebraic number.
Some, such as Euler, have stated that this should not be possible per their definition of transcendental.
So my question is: Are their subgroups of transcendental numbers, such that those that can be calculated/presented as a finite algebraic expression, and those that can only be presented as an infinite arithmetic or product series, or neither, so as to distinguish them from each other?

Notes:
Ramanujan found a general class equation for e^pi at integer intervals involving infinite product series. But as far as I know, there is only one nested arithmetic relation (Please correct me if I am wrong).

Essentially:
The ‘silver ratio’ of the ‘golden ratio’ is equal to e^(2/5*pi) divided by the ‘silver ratio’ of e^(2*pi)/2.

The geometrical expression of this relation is more straightforward.

By ‘silver ratio’, I refer to the ‘halving’ of a non-right angle of a right triangle, or simply, the sum of the long leg with the hypotenuse of a right triangle, with the short leg as 1.

Thanks for any thoughts on this.
 
Mathematics news on Phys.org
cc math said:
Ramanujan discovered a relationship between e^pi and the golden ratio which involved an infinite nested arithmetic series of repeating term.
Argument: Since such a series is the equivalent of a simple finite algebraic and geometric expression, there can be presented an algebraic expression of a transcendental number which is equal to an algebraic number.
Some, such as Euler, have stated that this should not be possible per their definition of transcendental.
So my question is: Are their subgroups of transcendental numbers, such that those that can be calculated/presented as a finite algebraic expression, and those that can only be presented as an infinite arithmetic or product series, or neither, so as to distinguish them from each other?

Notes:
Ramanujan found a general class equation for e^pi at integer intervals involving infinite product series. But as far as I know, there is only one nested arithmetic relation (Please correct me if I am wrong).

Essentially:
The ‘silver ratio’ of the ‘golden ratio’ is equal to e^(2/5*pi) divided by the ‘silver ratio’ of e^(2*pi)/2.

The geometrical expression of this relation is more straightforward.

By ‘silver ratio’, I refer to the ‘halving’ of a non-right angle of a right triangle, or simply, the sum of the long leg with the hypotenuse of a right triangle, with the short leg as 1.

Thanks for any thoughts on this.
See
https://en.wikipedia.org/wiki/Gelfond's_constant
and
https://en.wikipedia.org/wiki/Gelfond–Schneider_theorem#Corollaries
 
  • Like
Likes pinball1970, dextercioby, PeroK and 1 other person
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top