MHB Is φ a bijective homomorphism between simple $R$-modules?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Isomorphism
Click For Summary
In the discussion, the focus is on proving that a non-zero homomorphism φ between simple R-modules M and M' is an isomorphism. It is established that since M' is a simple R-module, the image of φ must either be the zero module or equal to M', leading to the conclusion that φ is onto. Additionally, since the kernel of φ must be either the zero module or all of M, and φ is non-zero, it follows that the kernel is zero, making φ one-to-one. Therefore, φ is bijective, confirming that it is indeed an isomorphism. The discussion effectively clarifies the conditions under which a homomorphism between simple modules is bijective.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring with unit and $M$ be a $R$-module.

Let $\phi : M\rightarrow M'$ be a non-zero homomorphism of simple $R$-module.
I want to show that $\phi$ is an isomorphism.

To show that we have to show that $\phi$ is bijective, right? (Wondering)

What exactly is the definition of $M'$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
To show that we have to show that $\phi$ is bijective, right? (Wondering)

Yes, that's right.

What exactly is the definition of $M'$ ? (Wondering)
$M'$ is a simple $R$-module.
 
We have that $\text{Im}\phi $ is a $R$-submodule of $M'$. Since $M'$ is simple, it follows that $\text{Im}\phi=O$ or $\text{Im}\phi=M'$.
Since $\phi$ is a non-zero homomorphism, it must be $\text{Im}\phi=M'$, right? (Wondering)
If this is correct, it follows that $\phi$ is onto, or not? (Wondering)

We also have that $\ker\phi $ is a $R$-submodule of $M$. Since $M$ is simple, it follows that $\ker\phi=O$ or $\ker\phi=M$.
The kernel is equal to the set of elements mapped to $0$. Since $\phi$ is non-zero, it must be that $\ker\phi=O$, right? (Wondering)
If this is correct, it follows that $\phi$ is 1-1, or not? (Wondering) Therefore, $\phi$ is bijective.
 
You are correct on all points. (Nod)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
901
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K