MHB Is f a Contraction Mapping on [1,∞)?

Poirot1
Messages
243
Reaction score
0
f:[1,infinity)->[1,infinity)

$f(x)=x^{0.5}+x^{-0.5}$

I thought about using MVT but it doesn't work and I've tried showing it conventially but i can't reduce it to k|x-y|
 
Physics news on Phys.org
Poirot said:
f:[1,infinity)->[1,infinity) $f(x)=x^{0.5}+x^{-0.5}$ I thought about using MVT but it doesn't work and I've tried showing it conventially but i can't reduce it to k|x-y|

For $1\leq x <y<+\infty$ you'll get

$\left|f(y)-f(x)\right|=\dfrac{1}{2\sqrt{c}}\left(1-\dfrac{1}{c}\right)|y-x|$

Now, use that a global maximum for $F(c)=\dfrac{1}{2\sqrt{c}}\left(1-\dfrac{1}{c}\right)$ in $[1,+\infty)$ is $K=\dfrac{1}{3\sqrt{3}}<1$
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top