MHB Is \(F[x]/<p(x)>\) the Root Field of \(x^4+ax^2+b\)?

  • Thread starter Thread starter Kiwi1
  • Start date Start date
  • Tags Tags
    Field Root
Click For Summary
If \(p(x) = x^4 + ax^2 + b\) is irreducible in \(F[x]\), then \(F[x]/<p(x)>\) is established as the root field of \(p(x)\) over \(F\). The construction involves forming an extension \(F(d_1)\) where \(d_1\) is derived from the roots of a related quadratic polynomial. The roots of \(p(x)\) can be expressed in terms of \(d_1\) and additional roots \(d_2\) and \(d_3\) in suitable extensions. By demonstrating that all roots of \(p(x)\) reside in \(F(d_1, d_2)\) and utilizing a theorem about root fields, it is concluded that \(F(c)\) indeed serves as the root field of \(p(x)\). The proof effectively shows that all roots of the irreducible polynomial are contained within the constructed field.
Kiwi1
Messages
106
Reaction score
0
Prove that if \(p(x)=x^4+ax^2+b\) is irreducible in F[x], then \(F[x]/<p(x)>\) is the root field of p(x) over F.

My Attempt:
1. Let F(c) = \(F[x]/<p(x)>\) where c is a root of p(x). Then F(c) is a degree 4 extension over F because c is the root of a 4th order irreducible polynomial in F[x].

2. \(p(x)=x^4+ax^2+b=(x^2+\frac a2)^2-(\frac{a^2}4-b)\)

Form the extension \(F(d_1)\) where \(d_1,-d_1\) are the roots of \(x^2-[\frac{a^2}4-b]\)

Now the four roots (two each) of \(x^2+\frac a2+d_1\) and \(x^2+\frac a2-d_1\) are the four roots of p(x) in a suitable extension of F.

Let \(d_2\) be a root of \(x^2+\frac a2-d_1\) in \(F(d_1,d_2)\). So \(d_2=\sqrt{d_1-\frac a2}\) and \(\pm d_2\) are two roots of p(x). Also \(d_3=\sqrt{-d_1-\frac a2}\) are two more roots this time in \(F(d_1,d_3)\).

3. \(F(d_1,d_2)\) or \(F(d_1,d_3)\) between them contain the four roots of p(x). Choose the one that contains c. Suppose without loss of generality \(c \in F(d_1,d_2)\).

4. \(c \in F(d_1,d_2)\) so \(F(c) \subseteq F(d_1,d_2)\)
5. \(c=\pm d_2\) so \(d_2 \in F(c)\) so \(d_1=d_2^2 +\frac a2\in F(c)\)
6. \(d_1,d_2 \in F(c)\) so \(F(c) \supseteq F(d_1,d_2)\) and using (4) above \(F(c) = F(d_1,d_2)\)Now all I think I need to do is show that \(\pm d_3 \in F(d_1,d_2)\) and conclude that F(c) is a rootfield of p(x)

Unfortunately this last step has me stumped!
 
Last edited:
Physics news on Phys.org
I think I solved it.

I have
"Theorem 7: Let K be the root field of some polynomial q(x) over F. For every irreducible polynomial p(x) in F[x], if p(x) has one root in K, then p(x) must have all of its roots in K."

In my problem I have \(q(x) = (x-d_2)(x+d_2)=x^2-d_2^2=x^2-d_1+\frac a2 \in F(d_1)[x]\)

So \(F(d_1,d_2)\) is the root field of q(x) over \(F(d_1)\). What's more \(c \in F(d_1,d_2)\) so by Theorem 7 all roots of p(x) (which is irreducible in \(F(d_1)\)) must be in \(F(d_1,d_2)=F(c)\)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 25 ·
Replies
25
Views
3K
Replies
48
Views
4K
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K