MHB Is $f(x) = xf(1)$ the only solution to the given functional equation?

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Functional
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $f:\mathbb R\to \mathbb R$ be a function satisfying $f(x+y+2xy) = f(x)+f(y) + 2f(xy)$ for all $x, y\in\mathbb R$. Then I need to show that $f(2017 x) = 2017 f(x)$ for all $x\in \mathbb R$.

I am not sure where to start. All I could note is that $f(0)=0$ which one obtains by susbtituing $x=y=0$. If $f$ is a linear functions then clearly $f$ satisfies the given condition and I suspect that these are the only candidates for $f$.
 
Mathematics news on Phys.org
If you put $y=-\frac12$, that should lead you to $f(4x) = 4f(x)$. But I don't see any way to get from $4$ to $2017$.
 
Opalg said:
If you put $y=-\frac12$, that should lead you to $f(4x) = 4f(x)$. But I don't see any way to get from $4$ to $2017$.

Assuming $f$ is an odd function, and then replacing $x$ by $-x$ and $y$ by $-y$ and adding we get
$$f(x+y+2xy) + f(-x-y+2xy) = 4f(xy) = f(4xy)$$
where the last equality is by your observation. This looks like $f(a) + f(b) = f(a+b)$ since $(x+y+2xy) + (-x-y + 2xy) = 4xy$.

So one can make some progress from here. But that is assuming if $f$ is odd. Are you able to see why $f$ should be odd?
 
Here's another approach. In the equation $f(x+y+2xy) = f(x)+f(y) + 2f(xy)$, put $(x,y) = (0,0)$ to get $f(0) = 0.$ Then put $(x,y) = (-1,-1)$ to get $f(-1) = (-1)f(1).$

Now assume as an inductive hypothesis that $f(k) = kf(1)$ for all $k$ with $-n\leqslant k\leqslant n$. Put $(x,y) = (n,-1)$ to get $f(-n-1) = f(n) + f(-1) + 2f(-n) = (-n-1)f(1).$ Next, put $(x,y) = (-n-1,-1)$ to get $f(n) = f(-n-1) + f(-1) + 2f(n+1)$, from which $2f(n+1) = 2(n+1)f(1)$ and hence $f(n+1) = (n+1)f(1)$.

That completes the inductive step, showing that $f(n) = nf(1)$ for all $n\in\Bbb{Z}$. In particular, $f(2017x) = 2017f(x)$ for all $x\in \Bbb{Z}$. But this time I don't see how to get from $\Bbb{Z}$ to $\Bbb{R}$! If you knew that $f$ was continuous, you might try to show that $f(r) = rf(1)$ for all rational $r$, and then the result would follow by continuity for all real $x$. But presumably you're not given that information.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top