B Is Gravity Impacting Projectile Range Beyond Air Resistance Effects?

AI Thread Summary
The discussion highlights that while air resistance reduces the maximum range of a projectile, gravity also plays a significant role in diminishing initial velocity, particularly when launched at a 45-degree angle. It is noted that the constant propulsive force leads to a velocity reduction of approximately 3 m/sec due to gravity, indicating that not all range loss can be attributed to drag. The conversation emphasizes the need for authoritative confirmation regarding the impact of gravity on projectile range. Additionally, it mentions that the speed loss during ascent is compensated by speed gain during descent, aided by gravity. The interaction between gravity and air resistance in projectile motion is a key focus of the discussion.
Amateur999
Messages
1
Reaction score
0
TL;DR Summary
Drag and projectile motion
Calculated maximum range of arrow at 45 degrees with initial velocity measured horizontally is of course reduced by air resistance. BUT initial velocity at 45 is reduced because propulsive force is constant and gravity reduces velocity by about 3m/sec. So not all distance loss is drag. Authors attibute all loss to drag so i need authorative confirmation of this extra factor.
 
Physics news on Phys.org
Amateur999 said:
BUT initial velocity at 45 is reduced because propulsive force is constant and gravity reduces velocity by about 3m/sec.
The loss of speed as the arrow climbs is made up for by the gain as it descends and gravity is helping.
 
Amateur999 said:
BUT initial velocity at 45 is reduced because propulsive force is constant and gravity reduces velocity by about 3m/sec.
Welcome!
Could you explain that part?
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top