B Is it possible to find the energy level of a hydrogen atom in this way?

hongseok
Messages
20
Reaction score
3
TL;DR Summary
Is it possible to find the energy level of a hydrogen atom in this way?
1707912657732.png
 
Physics news on Phys.org
This is similar to Bohr's model, except that you are not using the balance of force (centrifugal force cancelling the Coulomb attraction). I haven't looked at the calculation in detail, but it would make sense that plugging in experimental values for the transitions, you would recover the same values of ##r## as in the Bohr model.
 
As @DrClaude say, it is similar to the Bohr's procedure and confinement of an integer number of wavelengths on the circular trajectory of radius r. But, remember: this model is limited and based on classical concepts. It doesn't reflect the complete wave-like features of the electron confined by the nucleus potential energy.
 
@hongseok posts should not be images. Please use the PF LaTeX features to post math expressions and equations directly. There is a LaTeX Guide link at the bottom left of the post window.
 
  • Like
Likes Vanadium 50 and hongseok
DrClaude said:
This is similar to Bohr's model, except that it does not use a force balance (centrifugal force canceling out the Coulomb attraction). I haven't looked at the calculations in detail, but it seems reasonable that if we plug in the experimental values for the transition, we can recover the same values as in the Bohr model.
PeterDonis said:
@hongseok posts should not be images. Please use the PF LaTeX features to post math expressions and equations directly. There is a LaTeX Guide link at the bottom left of the post window.
I see
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top