Is it possible to simplify this radical equation without using a calculator?

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
Click For Summary

Discussion Overview

The discussion revolves around simplifying the radical equation sqrt{7} - sqrt{8 - 2sqrt{7}} = 1 without using a calculator. Participants explore various methods of squaring and manipulating the equation, seeking clarity on the steps involved.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • Some participants express confusion about the correct method to square the expression sqrt{7} - sqrt{8 - 2sqrt{7}} and request step-by-step guidance.
  • One participant, Dan, corrects an earlier claim about squaring the expression, emphasizing that (a - b)^2 = a^2 - 2ab + b^2, and provides a breakdown of the terms involved.
  • Another participant questions the legality of multiplying sqrt{7} by sqrt{8 - 2sqrt{7}} and seeks clarification on the application of the rule sqrt{a}*sqrt{b} = sqrt{ab}.
  • A later reply mentions using a computational tool to simplify the expression and arrives at a form that confirms the left side equals 1, but questions how the multiplication leads to a specific form.
  • Some participants demonstrate an alternative approach by rewriting the expression as sqrt{7} - sqrt{(\sqrt{7} - 1)^2} and simplifying it to show that it equals 1.

Areas of Agreement / Disagreement

Participants do not reach consensus on the best method for simplifying the equation, and multiple approaches are presented. There is ongoing confusion and clarification regarding the squaring process and the manipulation of radicals.

Contextual Notes

Some participants express uncertainty about the steps involved in squaring the left side and the implications of manipulating radicals, indicating a need for further clarification on mathematical rules and operations.

mathdad
Messages
1,280
Reaction score
0
Show that the left side equals the right side without a calculator.

sqrt{7} - sqrt{8 - 2sqrt{7}} = 1

I know squaring must be done here and probably more than once. I am stuck in terms of squaring the left side.

[sqrt{7} - sqrt{8 - 2sqrt{7}}]^2 = (1)^2

Can someone square the left side for me step by step?
 
Mathematics news on Phys.org
RTCNTC said:
Show that the left side equals the right side without a calculator.

sqrt{7} - sqrt{8 - 2sqrt{7}} = 1

I know squaring must be done here and probably more than once. I am stuck in terms of squaring the left side.

[sqrt{7} - sqrt{8 - 2sqrt{7}}]^2 = (1)^2

Can someone square the left side for me step by step?
You didn't do the square on the [math]\sqrt{7} - \sqrt{8 - 2 \sqrt{7}}[/math] right.

Let [math]a = \sqrt{7}[/math] and [math]b = \sqrt{8 - 2 \sqrt{7}}[/math]. What you wrote is [math](a - b)^2 = a^2 - b^2[/math] . This is not true. [math](a - b)^2 = a^2 - 2ab + b^2[/math] or:

[math]\left ( \sqrt{7} - \sqrt{8 - 2 \sqrt{7}} \right )^2 = (\sqrt{7})^2 - 2 \sqrt{7} \cdot \sqrt{8 - 2 \sqrt{7}} + \left ( \sqrt{8 - 2 \sqrt{7}} \right )^2[/math]

See what you can do with this.

-Dan
 
topsquark said:
You didn't do the square on the [math]\sqrt{7} - \sqrt{8 - 2 \sqrt{7}}[/math] right.

Let [math]a = \sqrt{7}[/math] and [math]b = \sqrt{8 - 2 \sqrt{7}}[/math]. What you wrote is [math](a - b)^2 = a^2 - b^2[/math] . This is not true. [math](a - b)^2 = a^2 - 2ab + b^2[/math] or:

[math]\left ( \sqrt{7} - \sqrt{8 - 2 \sqrt{7}} \right )^2 = (\sqrt{7})^2 - 2 \sqrt{7} \cdot \sqrt{8 - 2 \sqrt{7}} + \left ( \sqrt{8 - 2 \sqrt{7}} \right )^2[/math]

See what you can do with this.

-Dan

The middle part is still confusing.

2sqrt{7}*sqrt{8 - 2sqrt{7}}

It is legal to multiply sqrt{7} by sqrt{8 - 2sqrt{7}}?

In other words, can I apply the rule
sqrt{a}*sqrt{b} = sqrt{ab}?

I know the piece on the far right [sqrt{8 - 2sqrt{7}]^2 =
8 - 2sqrt{7}.

Can you break down the pieces for me if my effort is wrong?
 
I used the wolfram website to calculate
(2sqrt{7})(sqrt{8 - 2sqrt{7}}) and several forms of the product were displayed.

I selected the form 2(7 - sqrt{7}) and was able to show that indeed the left side also equals 1.

(sqrt{7})^2 - 2(7 - sqrt{7}) + [sqrt{8 - 2sqrt{7}}]^2 = 1

(sqrt{7})^2 - 2(7 - sqrt{7}) + 8 - 2sqrt{7} = 1

7 - 14 + 2 sqrt{7}) + 8 - 2sqrt{7} = 1

7 - 14 + 8 = 1

15 - 14 = 1

1 = 1

Question:

How does (2sqrt{7})(sqrt{8 - 2sqrt{7}) become
2(7 - sqrt{7})?
 
$$\sqrt{7}-\sqrt{8-2\sqrt7}=\sqrt7-\sqrt{(\sqrt7-1)^2}=\sqrt7+1-\sqrt7=1$$
 
greg1313 said:
$$\sqrt{7}-\sqrt{8-2\sqrt7}=\sqrt7-\sqrt{(\sqrt7-1)^2}=\sqrt7+1-\sqrt7=1$$
I had no idea that it is possible to bring sqrt{7} to the right side. I always thought that radicals and constants are to be separated when solving radical equations.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K