MHB Is it possible to simplify this radical equation without using a calculator?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
AI Thread Summary
The discussion focuses on simplifying the radical equation sqrt{7} - sqrt{8 - 2sqrt{7}} = 1 without using a calculator. Participants emphasize the importance of correctly applying the formula for squaring a binomial, noting that (a - b)^2 equals a^2 - 2ab + b^2, not a^2 - b^2. Clarifications are provided on multiplying square roots and breaking down the components of the equation. Ultimately, it is shown that the left side simplifies to 1, confirming the equation's validity. The discussion highlights the nuances of handling radicals in algebraic expressions.
mathdad
Messages
1,280
Reaction score
0
Show that the left side equals the right side without a calculator.

sqrt{7} - sqrt{8 - 2sqrt{7}} = 1

I know squaring must be done here and probably more than once. I am stuck in terms of squaring the left side.

[sqrt{7} - sqrt{8 - 2sqrt{7}}]^2 = (1)^2

Can someone square the left side for me step by step?
 
Mathematics news on Phys.org
RTCNTC said:
Show that the left side equals the right side without a calculator.

sqrt{7} - sqrt{8 - 2sqrt{7}} = 1

I know squaring must be done here and probably more than once. I am stuck in terms of squaring the left side.

[sqrt{7} - sqrt{8 - 2sqrt{7}}]^2 = (1)^2

Can someone square the left side for me step by step?
You didn't do the square on the [math]\sqrt{7} - \sqrt{8 - 2 \sqrt{7}}[/math] right.

Let [math]a = \sqrt{7}[/math] and [math]b = \sqrt{8 - 2 \sqrt{7}}[/math]. What you wrote is [math](a - b)^2 = a^2 - b^2[/math] . This is not true. [math](a - b)^2 = a^2 - 2ab + b^2[/math] or:

[math]\left ( \sqrt{7} - \sqrt{8 - 2 \sqrt{7}} \right )^2 = (\sqrt{7})^2 - 2 \sqrt{7} \cdot \sqrt{8 - 2 \sqrt{7}} + \left ( \sqrt{8 - 2 \sqrt{7}} \right )^2[/math]

See what you can do with this.

-Dan
 
topsquark said:
You didn't do the square on the [math]\sqrt{7} - \sqrt{8 - 2 \sqrt{7}}[/math] right.

Let [math]a = \sqrt{7}[/math] and [math]b = \sqrt{8 - 2 \sqrt{7}}[/math]. What you wrote is [math](a - b)^2 = a^2 - b^2[/math] . This is not true. [math](a - b)^2 = a^2 - 2ab + b^2[/math] or:

[math]\left ( \sqrt{7} - \sqrt{8 - 2 \sqrt{7}} \right )^2 = (\sqrt{7})^2 - 2 \sqrt{7} \cdot \sqrt{8 - 2 \sqrt{7}} + \left ( \sqrt{8 - 2 \sqrt{7}} \right )^2[/math]

See what you can do with this.

-Dan

The middle part is still confusing.

2sqrt{7}*sqrt{8 - 2sqrt{7}}

It is legal to multiply sqrt{7} by sqrt{8 - 2sqrt{7}}?

In other words, can I apply the rule
sqrt{a}*sqrt{b} = sqrt{ab}?

I know the piece on the far right [sqrt{8 - 2sqrt{7}]^2 =
8 - 2sqrt{7}.

Can you break down the pieces for me if my effort is wrong?
 
I used the wolfram website to calculate
(2sqrt{7})(sqrt{8 - 2sqrt{7}}) and several forms of the product were displayed.

I selected the form 2(7 - sqrt{7}) and was able to show that indeed the left side also equals 1.

(sqrt{7})^2 - 2(7 - sqrt{7}) + [sqrt{8 - 2sqrt{7}}]^2 = 1

(sqrt{7})^2 - 2(7 - sqrt{7}) + 8 - 2sqrt{7} = 1

7 - 14 + 2 sqrt{7}) + 8 - 2sqrt{7} = 1

7 - 14 + 8 = 1

15 - 14 = 1

1 = 1

Question:

How does (2sqrt{7})(sqrt{8 - 2sqrt{7}) become
2(7 - sqrt{7})?
 
$$\sqrt{7}-\sqrt{8-2\sqrt7}=\sqrt7-\sqrt{(\sqrt7-1)^2}=\sqrt7+1-\sqrt7=1$$
 
greg1313 said:
$$\sqrt{7}-\sqrt{8-2\sqrt7}=\sqrt7-\sqrt{(\sqrt7-1)^2}=\sqrt7+1-\sqrt7=1$$
I had no idea that it is possible to bring sqrt{7} to the right side. I always thought that radicals and constants are to be separated when solving radical equations.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top