MHB Is McLaurin Expansion the Key to Solving Integration by Expansion?

ra_forever8
Messages
106
Reaction score
0
Consider the integral
\begin{equation}
I(x)= \frac{1}{\pi} \int^{\pi}_{0} sin(xsint) dt
\end{equation}
show that
\begin{equation}
I(x)= \frac{2x}{\pi} +O(x^{3})
\end{equation}
as $x\rightarrow0$.
=> I Have used the expansion of McLaurin series of $I(x)$ but did not work.
please help me.
 
Last edited:
Mathematics news on Phys.org
I'm not sure if the expansion correct. However, we can do it as follow.

By McLaurin expansion, we have

$$f(x,t)=\sin(x\sin t)=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}(\sin t)^{2n-1}=\sum_{n=1}^{\infty} f_n(x,t)$$.

Since we integrate $$f(x,t)$$ on $$E=[0,\pi]\ni t$$, we should test uniform convergence of the series, $$\sum_{n=1}^{\infty} f_n(x,t)$$, at first.

Clearly, $$|f_n(x,t)|\leq \frac{|x|^{2n-1}}{(2n-1)!}$$ on $$E\ni t$$, and $$\sum_{n=1}^{\infty} \frac{|x|^{2n-1}}{(2n-1)!}$$ converges uniformly on $$\mathbb{R}\ni x$$. Thus, $$\sum_{n=1}^{\infty} f_n(x,t)$$ converges uniformly on $$E\ni t$$.Hence $$\frac{1}{\pi}\int_E f(x,t)dt=\frac{1}{\pi}\int_E \sum_{n=1}^{\infty}f_n(x,t)dt=\frac{1}{\pi}\sum_{n=1}^{\infty}\int_E f_n(x,t)dt=\frac{1}{\pi}\int_E x\sin tdt+O(x^3)$$, as $$x$$ goes to $$0$$.

I think you can complete the rest.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top