Is my calculation of the confidence interval for $\mu$ correct? (Wondering)

Click For Summary
SUMMARY

The discussion centers on calculating the confidence interval for the mean ($\mu$) of a normally distributed variable $X$ with unknown variance. The user initially uses a z-value of 1.645 for a 90% confidence interval based on a sample size of 22, sample mean of 7.2, and a standard deviation of 4. However, it is clarified that since the population standard deviation ($\sigma$) is unknown, a t-test should be employed instead, using a t-value of 1.72 for 21 degrees of freedom. The correct confidence interval is thus recalculated using the t-distribution.

PREREQUISITES
  • Understanding of confidence intervals and their calculations
  • Familiarity with the normal and t-distributions
  • Knowledge of sample size and degrees of freedom in statistical analysis
  • Basic proficiency in statistical notation and terminology
NEXT STEPS
  • Learn how to calculate confidence intervals using the t-distribution
  • Study the differences between sample and population standard deviations
  • Explore the concept of degrees of freedom in statistical tests
  • Investigate the implications of using z-values versus t-values in hypothesis testing
USEFUL FOR

Statisticians, data analysts, students in statistics courses, and anyone involved in hypothesis testing and confidence interval calculations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

The variable $X$ is normally distributed with unknown expected value $\mu$ and unknown variance $\sigma^2$.

I want to determine the confidence interval for $\mu$ for $n=22; \ \overline{X}_n=7.2; \ S'=4; \ 1-\alpha=0.90$.

Is $S'$ the standard deviation? (Wondering) In some notes that I found in Google, it symbolized $s_n$ the standrard deviation of a sample and by $s_n'$ if we have the total population instead of a sample. If it is meant here like that, we follow the same steps to determine the confidence intervall in both case, or not? (Wondering)

If yes, I have done the following:

We have that $1-\alpha=0.90 \Rightarrow \alpha=0.10$.

So, we get $1-\frac{\alpha}{2}=1-\frac{0.10}{2}=1-0.05=0.95$.

Therefore we have $z =1.645$.

The median is equal to $\overline{X}_n=7.2$.

The half of the length of the confidence interval is equal to \begin{equation*}\frac{\sigma\cdot z}{\sqrt{n}}=\frac{S'\cdot z}{\sqrt{n}}=\frac{4\cdot 1.645}{\sqrt{22}}=1.40286\end{equation*}

The confidence interval is therefore equal to \begin{equation*}KI=\left [ \overline{x}-\frac{\sigma\cdot z}{\sqrt{n}};\overline{x}+\frac{\sigma\cdot z}{\sqrt{n}}\right ]=\left [ 7.2-1.40286;7.2+1.40286\right ]=\left [ 5.79714;8.60286\right ]\end{equation*} Is everything correct? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

The variable $X$ is normally distributed with unknown expected value $\mu$ and unknown variance $\sigma^2$.

I want to determine the confidence interval for $\mu$ for $n=22; \ \overline{X}_n=7.2; \ S'=4; \ 1-\alpha=0.90$.

Is $S'$ the standard deviation? (Wondering) In some notes that I found in Google, it symbolized $s_n$ the standrard deviation of a sample and by $s_n'$ if we have the total population instead of a sample. If it is meant here like that, we follow the same steps to determine the confidence intervall in both case, or not? (Wondering)

Hey mathmari!

The convention is that we use greek letters for the population, and that we use latin letters for samples.
So $\sigma$ is the standard deviation of the population, and $s$ is the standard deviation of the sample.
Additionally we have $SE$ or $s_{\overline X}$ for the standard deviation of the sample mean of a sample (aka standard error).

I don't know why there is an accent next to the $S$. It looks like a typo to me.
Do you have a reference to those Google notes? (Wondering)
Either way, I'm assuming that just $S$ was intended, since it is explicitly stated that the standard deviation of the population ($\sigma$) is unknown.
mathmari said:
We have that $1-\alpha=0.90 \Rightarrow \alpha=0.10$.

So, we get $1-\frac{\alpha}{2}=1-\frac{0.10}{2}=1-0.05=0.95$.

Therefore we have $z =1.645$.

The median is equal to $\overline{X}_n=7.2$.

The half of the length of the confidence interval is equal to \begin{equation*}\frac{\sigma\cdot z}{\sqrt{n}}=\frac{S'\cdot z}{\sqrt{n}}=\frac{4\cdot 1.645}{\sqrt{22}}=1.40286\end{equation*}

The confidence interval is therefore equal to \begin{equation*}KI=\left [ \overline{x}-\frac{\sigma\cdot z}{\sqrt{n}};\overline{x}+\frac{\sigma\cdot z}{\sqrt{n}}\right ]=\left [ 7.2-1.40286;7.2+1.40286\right ]=\left [ 5.79714;8.60286\right ]\end{equation*}

Edit: I'm afraid we need to use a t-value instead of a z-value.
And we shouldn't use $\sigma$ as an alias for $S'$. After all it's explicitly stated that we do not know $\sigma$. (Nerd)
 
I like Serena said:
The convention is that we use greek letters for the population, and that we use latin letters for samples.
So $\sigma$ is the standard deviation of the population, and $s$ is the standard deviation of the sample.
Additionally we have $SE$ or $s_{\overline X}$ for the standard deviation of the sample mean of a sample (aka standard error).

I don't know why there is an accent next to the $S$. It looks like a typo to me.
Do you have a reference to those Google notes? (Wondering)
Either way, I'm assuming that just $S$ was intended, since it is explicitly stated that the standard deviation of the population ($\sigma$) is unknown.

Ah ok! The link is here.

The part where I found that is the following:

View attachment 8054
I like Serena said:
It looks fine to me.
Except that we shouldn't use $\sigma$ as an alias for $S'$. After all it's explicitly stated that we do not know $\sigma$. (Nerd)

Ah ok! (Yes)
 

Attachments

  • st.JPG
    st.JPG
    37.7 KB · Views: 110
mathmari said:
Ah ok! (Yes)

Oh wait! (Wait)

Since we do not know $\sigma$, we cannot use $z=1.645$.
Instead we have to do a $t$-test, meaning we use $t$ instead of $z$.
And we have to look up what the critical $t$-value is.
Since we have $n=22$, we have the degrees of freedom $df=22-1=21$.

If we look it up in a t-table, we'll find that for a 2-tailed test with $\alpha=0.10$ and $df=21$, we have $t=1.72$. (Thinking)
 
mathmari said:
Ah ok! The link is here.

The part where I found that is the following:

Ah. I see. (Happy)
They make the distinction between the standard deviations $s$ of a sample where we only have an estimate of the mean of the population, which is $\overline x$. It means we have to divide by $(n-1)$, since we lose a freedom due to the unknown $\mu$.
And $s'$ is the alternative way to calculate the standard deviation when we do know the mean $\mu$ of the population. And we know $\mu$ in this case since $\overline{x}_n=\mu$ if we have the complete population, so that we do not lose a freedom, so we divide by $n$.
I wouldn't consider this 'official' notation though. As I see it $s'$ is only introduced in this particular text to explain the distinction.
Normally the distinction is explained by writing $\sigma^2=\frac{\sum(x_i-\mu)^2}{N}$. That is, with $\sigma$ and $\mu$ instead of $s$ and $\overline x$. And we might as well write $N$ instead of $n$ to indicate it's the whole population instead of a sample. (Nerd)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
26
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K