MHB Is my solution for finding the values of t where h is equal to 1.5 correct?

  • Thread starter Thread starter Bushy
  • Start date Start date
  • Tags Tags
    Trig
AI Thread Summary
The discussion focuses on solving the equation \( h = 1 + 0.6 \cos \left( \frac{\pi t}{2} \right) \) for \( h = 1.5 \) within the interval \( t \in [0, 4] \). The initial calculations lead to the equation \( \frac{5}{6} = \cos \left( \frac{\pi t}{2} \right) \). A correction is provided, indicating that the general solution should include \( t = 4n \pm \frac{2 \cos^{-1} \left( \frac{5}{6} \right)}{\pi} \). The valid solutions within the specified interval are approximately \( t \approx 0.373 \) and \( t \approx 3.627 \). The final confirmation states that the initial solutions presented were indeed correct.
Bushy
Messages
40
Reaction score
0
I have $h = 1+0.6 \cos \left( \frac{\pi t}{2}\right)$ and need to find where $h=1.5$ for $t\in [0,4]$

The period of the function is 4 and I get solutions of

$\displaystyle 1.5 = 1+0.6 \cos \left( \frac{\pi t}{2}\right)$

$\displaystyle0.5 = 0.6 \cos \left( \frac{\pi t}{2}\right)$

$\displaystyle \frac{5}{6} = \cos \left( \frac{\pi t}{2}\right)$

$\displaystyle \cos^{-1}\frac{5}{6} = \frac{\pi t}{2}$

$\displaystyle t = \frac{2\times \cos^{-1}\frac{5}{6}}{\pi} \approx 0.373, 4-0.373 $

Can anyone find a mistake ere?
 
Mathematics news on Phys.org
Bushy said:
I have $h = 1+0.6 \cos \left( \frac{\pi t}{2}\right)$ and need to find where $h=1.5$ for $t\in [0,4]$

The period of the function is 4 and I get solutions of

$\displaystyle 1.5 = 1+0.6 \cos \left( \frac{\pi t}{2}\right)$

$\displaystyle0.5 = 0.6 \cos \left( \frac{\pi t}{2}\right)$

$\displaystyle \frac{5}{6} = \cos \left( \frac{\pi t}{2}\right)$

$\displaystyle \cos^{-1}\frac{5}{6} = \frac{\pi t}{2}$

$\displaystyle t = \frac{2\times \cos^{-1}\frac{5}{6}}{\pi} \approx 0.373, 4-0.373 $

Can anyone find a mistake ere?

Hi Bushy, :)

\[\frac{5}{6} = \cos \left( \frac{\pi t}{2}\right)\]

\[\Rightarrow\frac{\pi t}{2}=2n\pi\pm\cos^{-1}\left( \frac{5}{6}\right)\]

\[\Rightarrow t=4n\pm\frac{2\cos^{-1}\left( \frac{5}{6}\right)}{\pi}\mbox{ where }n\in\mathbb{Z}\]

Since \(t\in[0,4]\) the only solutions are,

\[t=3.627141002645325\mbox{ and }t=0.37285899735467\]

So your solutions are correct. :)

Kind Regards,
Sudharaka.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top