Bushy
- 40
- 0
I have $h = 1+0.6 \cos \left( \frac{\pi t}{2}\right)$ and need to find where $h=1.5$ for $t\in [0,4]$
The period of the function is 4 and I get solutions of
$\displaystyle 1.5 = 1+0.6 \cos \left( \frac{\pi t}{2}\right)$
$\displaystyle0.5 = 0.6 \cos \left( \frac{\pi t}{2}\right)$
$\displaystyle \frac{5}{6} = \cos \left( \frac{\pi t}{2}\right)$
$\displaystyle \cos^{-1}\frac{5}{6} = \frac{\pi t}{2}$
$\displaystyle t = \frac{2\times \cos^{-1}\frac{5}{6}}{\pi} \approx 0.373, 4-0.373 $
Can anyone find a mistake ere?
The period of the function is 4 and I get solutions of
$\displaystyle 1.5 = 1+0.6 \cos \left( \frac{\pi t}{2}\right)$
$\displaystyle0.5 = 0.6 \cos \left( \frac{\pi t}{2}\right)$
$\displaystyle \frac{5}{6} = \cos \left( \frac{\pi t}{2}\right)$
$\displaystyle \cos^{-1}\frac{5}{6} = \frac{\pi t}{2}$
$\displaystyle t = \frac{2\times \cos^{-1}\frac{5}{6}}{\pi} \approx 0.373, 4-0.373 $
Can anyone find a mistake ere?