Undergrad Is $p$ irreducible in $\Bbb Z[(-1 + i\sqrt{3})/2]$ if $p \equiv 2\pmod{3}$?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
The discussion centers on proving that a prime integer \( p \) is irreducible in the ring \( \Bbb Z[(-1 + i\sqrt{3})/2] \) if and only if \( p \equiv 2 \pmod{3} \). Participants are encouraged to engage with the problem of the week (POTW), but no solutions have been provided by others. The original poster has shared their own solution, which is accessible for review. The topic highlights the relationship between prime integers and their irreducibility in specific algebraic structures. Overall, the thread emphasizes the mathematical exploration of prime characteristics in relation to modular arithmetic.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $p$ be a prime integer. Prove $p$ is irreducible in $\Bbb Z[(-1 + i\sqrt{3})/2]$ if and only if $p \equiv 2\pmod{3}$.
-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Let $d = (-1 + i\sqrt{3})/2$. The isomorphism $$\Bbb Z[d]/p\Bbb Z[d] \approx (\Bbb Z/p\Bbb Z)[x]/\langle x^2 + x + 1 \rangle$$ induced by the ring morphism $f : \Bbb Z[d] \to (\Bbb Z/p\Bbb Z)[x]/\langle x^2 + x + 1\rangle$, $f(a + bd) = [a]_p + _px + \langle x^2 + x + 1\rangle$ shows that $p$ is irreducible in $\Bbb Z[d]$ if and only if $x^2 + x + 1$ is irreducible in $(\Bbb Z/p\Bbb Z)[x]$. Indeed, since $\Bbb Z[d]$ is a PID, $p$ is irreducible in $\Bbb Z[d]$ if and only if $p\Bbb Z[d]$ is maximal in $\Bbb Z[p]$, which occurs if and only if $\Bbb Z[d]/p\Bbb Z[d]$ is a field. The isomorphism above then gives the desired equivalence.

Now it suffices to show that $x^2 + x + 1$ is irreducible in $\Bbb Z/p\Bbb Z[x]$ if and only if $p \equiv 2\pmod{3}$. The result is clear when $p = 2$, and over $\Bbb Z_3$, $x^2 + x + 1 = x^2 - 2x + 1 = (x - 1)^2$ is reducible. Now consider $p > 3$. We show that $x^2 + x + 1$ is reducible in $\Bbb Z/p\Bbb Z[x]$ if and only if $p \equiv 1\pmod{3}$. Due to the factorization $x^3 - 1 = (x - 1)(x^2 + x + 1)$ and the fact that $[1]_p$ is not a zero of $x^2 + x + 1$ when $p > 3$, we have that $x^2 + x + 1$ is reducible over $\Bbb Z/p\Bbb Z$ if and only if it has a zero of $x^3 - 1$ that is not equal to $[1]_p$. But then the zeros of $x^2 + x + 1$ give elements of order $3$ in $(\Bbb Z/p\Bbb Z)^*$, which occurs if and only if $3\, |\, (p - 1)$, i.e., $p \equiv 1\pmod{3}$.
 

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K