MHB Is $\Phi|_{U_2}$ a Vector Space Isomorphism?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $V$ be the real vector space $\mathbb{R}[X]$ and $M \subset \mathbb{R}$ a set with $d$ elements. Let $$U_1 := \{ f \in \mathbb{R}[X] | \forall m \in M : f(m) = 0\}, \ \ U_2 := \{ f \in \mathbb{R}[X] \mid \deg(f) \leq d − 1\}$$ be two vector spaces of $V$. Let $\Phi: V\rightarrow Ab(M,\mathbb{R})$ be a linear mapping that is defined by $\Phi (f)(m):=f(m)$.

I want to show that $\Phi\mid_{U_2}:U_2\rightarrow \text{Ab}(M,\mathbb{R})$ is a vector space isomorphism.

So, we have to show that $\Phi$ is injective ans surjective.

To show that the mapping is injective, we take to elements of $U_2$, say $f,g\in U_2$.

For them it holds that $f(m)=g(m)=0$ for every $m\in M$.

Suppose that $\Phi (f)=\Phi (g)$ then it follows that $f(m)=g(m)$.

Is this correct? So, $\Phi$ is injective, right? (Wondering)

How can we show that the mapping is surjective?
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari,

Based on context, I assume $\operatorname{Ab}(M,\Bbb R)$ is the space of real-valued functions on $M$, with addition and scalar multiplication defined pointwise. (Although, the symbol $\operatorname{Ab}$ used in such a way would indicate homomorphisms of abelian groups.)

Since $\Phi$ is a linear transformation, so is $\Phi \big|_{U_2}$. So to show $\Phi|_{U_2}$ is injective, it suffices to show $\operatorname{Ker}(\Phi\big|_{U_2}) = 0$. If $f\in \operatorname{Ker}(\Phi\big|_{U_2})$, then $f(m) = 0$ for all $m\in M$. Since $f\in U_2$, $f$ has degree less than $d$, and hence has less than $d$ roots. (Recall: A polynomial of degree $n$ over a field has no more than $n$ roots.) As $M$ has $d$ elements, we deduce $f = 0$. Hence, $\Phi|_{U_2}$ is injective.

To see that $\Phi|_{U_2}$ is surjective, let $M = \{m_1,\ldots, m_d\}$, take an element $g : M \to \Bbb R$, and define $f(x) = \sum\limits_{j = 1}^d g(m_j)\, f_j(x)$, where

$$f_j(x) = \prod_{{k=1 \atop k\neq j}}^d \frac{x-m_k}{m_j - m_k}$$

Show that $f\in U_2$ and $\Phi(f) = g$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top