MHB Is $\Phi|_{U_2}$ a Vector Space Isomorphism?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $V$ be the real vector space $\mathbb{R}[X]$ and $M \subset \mathbb{R}$ a set with $d$ elements. Let $$U_1 := \{ f \in \mathbb{R}[X] | \forall m \in M : f(m) = 0\}, \ \ U_2 := \{ f \in \mathbb{R}[X] \mid \deg(f) \leq d − 1\}$$ be two vector spaces of $V$. Let $\Phi: V\rightarrow Ab(M,\mathbb{R})$ be a linear mapping that is defined by $\Phi (f)(m):=f(m)$.

I want to show that $\Phi\mid_{U_2}:U_2\rightarrow \text{Ab}(M,\mathbb{R})$ is a vector space isomorphism.

So, we have to show that $\Phi$ is injective ans surjective.

To show that the mapping is injective, we take to elements of $U_2$, say $f,g\in U_2$.

For them it holds that $f(m)=g(m)=0$ for every $m\in M$.

Suppose that $\Phi (f)=\Phi (g)$ then it follows that $f(m)=g(m)$.

Is this correct? So, $\Phi$ is injective, right? (Wondering)

How can we show that the mapping is surjective?
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari,

Based on context, I assume $\operatorname{Ab}(M,\Bbb R)$ is the space of real-valued functions on $M$, with addition and scalar multiplication defined pointwise. (Although, the symbol $\operatorname{Ab}$ used in such a way would indicate homomorphisms of abelian groups.)

Since $\Phi$ is a linear transformation, so is $\Phi \big|_{U_2}$. So to show $\Phi|_{U_2}$ is injective, it suffices to show $\operatorname{Ker}(\Phi\big|_{U_2}) = 0$. If $f\in \operatorname{Ker}(\Phi\big|_{U_2})$, then $f(m) = 0$ for all $m\in M$. Since $f\in U_2$, $f$ has degree less than $d$, and hence has less than $d$ roots. (Recall: A polynomial of degree $n$ over a field has no more than $n$ roots.) As $M$ has $d$ elements, we deduce $f = 0$. Hence, $\Phi|_{U_2}$ is injective.

To see that $\Phi|_{U_2}$ is surjective, let $M = \{m_1,\ldots, m_d\}$, take an element $g : M \to \Bbb R$, and define $f(x) = \sum\limits_{j = 1}^d g(m_j)\, f_j(x)$, where

$$f_j(x) = \prod_{{k=1 \atop k\neq j}}^d \frac{x-m_k}{m_j - m_k}$$

Show that $f\in U_2$ and $\Phi(f) = g$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 26 ·
Replies
26
Views
685
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
796
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
954
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K