Does QED Originate from Non-Relativistic Systems?

  • Context: Graduate 
  • Thread starter Thread starter A. Neumaier
  • Start date Start date
  • Tags Tags
    Qed
Click For Summary
SUMMARY

The discussion centers on the origins of Quantum Electrodynamics (QED) and its relationship with non-relativistic systems, particularly lattice QED. Participants assert that QED should be understood as fundamentally arising from Poincare invariant quantum field theory (QFT), and that lattice QED lacks independent motivation and accuracy. The consensus is that while lattice QED serves as a conceptual tool, it does not provide the same predictive power or theoretical foundation as Poincare invariant QED, which remains the cornerstone of successful QED applications.

PREREQUISITES
  • Understanding of Quantum Electrodynamics (QED)
  • Familiarity with Poincare invariant quantum field theory (QFT)
  • Knowledge of lattice quantum field theory (lattice QED)
  • Concept of effective field theories in physics
NEXT STEPS
  • Research the implications of Poincare invariance in quantum field theories
  • Study the limitations and applications of lattice QED in theoretical physics
  • Explore the concept of effective field theories and their role in modern physics
  • Investigate the historical development and experimental validation of QED
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, theoretical physicists exploring the foundations of QED, and researchers interested in the implications of lattice QED and effective field theories.

A. Neumaier
Science Advisor
Insights Author
Messages
8,715
Reaction score
4,814
[Mentor's note - this thread was split off from https://www.physicsforums.com/threads/a-skeptics-view-on-bohmian-mechanics.899967/ as it is interesting in its own right and a digression there]

atyy said:
If we take the Wilsonian view of QFT (in the Copenhagen interpretation), then QED should be thought of as conceptually arising from a non-relativistic quantum mechanical system such as lattice QED.
This is a distortion of facts. One looks at lattice QCD only because it is derived from the Poincare invariant QCD; without the latter there would be no motivation at all to consider the former. And lattice QED is hardly ever pursued. The successes of QED, both historically and today, come solely from the Poincare invariant version.
 
Last edited by a moderator:
Physics news on Phys.org
A. Neumaier said:
This is a distortion of facts. One looks at lattice QCD only because it is derived from the Poincare invariant QCD; without the latter there would be no motivation at all to consider the former. And lattice QED is hardly ever pursued. The successes of QED, both historically and today, come solely from the Poincare invariant version.

I agree with this. Lattice QED was specifically designed to have the right continuum limit. So it's not a good example if you're wanting to show that Lorentz invariance can arise natural as a continuum approximation to a non-invariant theory. To be convincing you would have to have an independent motivation for lattice QED that did not rely on having the right continuum limit.
 
stevendaryl said:
I agree with this. Lattice QED was specifically designed to have the right continuum limit. So it's not a good example if you're wanting to show that Lorentz invariance can arise natural as a continuum approximation to a non-invariant theory. To be convincing you would have to have an independent motivation for lattice QED that did not rely on having the right continuum limit.

A. Neumaier said:
This is a distortion of facts. One looks at lattice QCD only because it is derived from the Poincare invariant QCD; without the latter there would be no motivation at all to consider the former. And lattice QED is hardly ever pursued. The successes of QED, both historically and today, come solely from the Poincare invariant version.

There is no Poincare invariant version!
 
atyy said:
There is no Poincare invariant version!
?

Any standard textbook of quantum field theory discusses Poincare invariant QED. The renormalized results at any loop order are Poincare invariant. And the experimental tests are about these results at low order (up to six).

That there are unresolved problems about the limit of suitably resummed nonperturbative version, which you seem to allude to, is a completely different matter that has at preesent no experimental consequences.

On the other hand, lattice QED is extremely inaccurate, very few computations have been performed, and if all other QED were erased, QED would immediately lose its status as an excellent physical theory.
 
Last edited:
  • Like
Likes   Reactions: vanhees71
atyy said:
There is no Poincare invariant version!

Are you talking about no Poincare-invariant version of QED, or of lattice QED?
 
A. Neumaier said:
?

Any standard textbook of quantum field theory discusses Poincare invariant QED. The renormalized results at any loop order are Poincare invariant. And the experimental tests are about these results at low order (up to six).

That there are unresolved problems about the limit of suitably resummed nonperturbative version, which you seem to allude to, is a completely different matter that has at preesent no experimental consequences.

On the other hand, lattice QED is extremely inaccurate, very few computations have been performed, and if all other QED were erased, WED would immediately lose its status as an excellent physical theory.

Well, it is the resummed nonperturbative version that makes it a quantum theory. In the absence of that, there is no QED as a quantum theory. It is the lattice QED that is a proper quantum theory.
 
  • Like
Likes   Reactions: Demystifier
stevendaryl said:
Are you talking about no Poincare-invariant version of QED, or of lattice QED?

The usual "Poincare invariant" QED has a landau pole, so it cannot exist as a quantum theory at all energies. If QED at high energies does not exist, the Poincare invariance is broken. So in effect, Poincare invariant QED is only a low energy effective field theory.
 
atyy said:
The usual "Poincare invariant" QED has a landau pole, so it cannot exist as a quantum theory at all energies.
The existence question for nonperturbative QED is wide open. The Landau pole has not been proved to exist, it may well be an artifact of low order perturbation theory. Your statement is therefore only a belief.

atyy said:
Poincare invariant QED is only a low energy effective field theory.
It is the latter that is Poincare invariant and responsible for all successes of QED.

Lattice theories are also only low energy effective field theories; so if you think the latter is a defect of a theory then lattice QED is as defective and far less predictive. There is no reason at all to give it the status you wish it to have.
 
atyy said:
it is the resummed nonperturbative version that makes it a quantum theory. In the absence of that, there is no QED as a quantum theory.
You may have this opinion but it is not shared by anybody else, as far as I can tell. There are many textbooks that have QED as one of the main examples of an excellent quantum theory, and none that says that there is no QED as a quantum theory.
 
  • #10
A. Neumaier said:
You may have this opinion but it is not shared by anybody else, as far as I can tell. There are many textbooks that have QED as one of the main examples of an excellent quantum theory, and none that says that there is no QED as a quantum theory.

They all agree QED is only a low energy effective theory. It is only in this region that we need Poincare invariance. So we can think of lattice QED and Poincare invariant QED as the same in the sense that both give the same low energy effective theories. In other words, there is no need for true Poincare invariance, only effective.
 
  • Like
Likes   Reactions: Demystifier
  • #11
atyy said:
They all agree QED is only a low energy effective theory.
Sure, but this is not a defect. All our theories in physics (with possible exception of string theory) are only low energy effective theories.

atyy said:
we can think of lattice QED and Poincare invariant QED as the same in the sense that both give the same low energy effective theories.
No we cannot. They don't give the same low energy effective theory. Everything is different about them.

Lattice QED in the form it exists makes not the same predictions but far weaker ones. Please cite a demonstration that lattice QED derives the anomalous magnetic moment to high accuracy!

In addition, lattice QED has one additional parameter, the lattice spacing, and all results depend on it. One gets the experimental results only in the limit where the lattice spacing goes to infinity and the coupling constants are highly tuned functions of the lattice spacing, and the fine tuning must be chosen exactly such that the results approach the QED limit - which presupposes it! The fine-tuning has no other justification!
 
  • #12
@atyy: But all this on QED is off-topic here; if you want to continue, please open another thread, and we can go into details.
 
  • #13
A. Neumaier said:
@atyy: But all this on QED is off-topic here; if you want to continue, please open another thread, and we can go into details.

The point is simple: my statements on lattice QED and QED are absolutely standard, although you may not like them, take for example: http://www.staff.science.uu.nl/~hooft101/lectures/basisqft.pdf, https://arxiv.org/abs/hep-lat/0211036.

There is of course fine tuning (without taking the lattice spacing to zero) so that the right low energy limit occurs, but all of this fine tuning is needed in the standard view of QED, and has nothing to do with Bohmian Mechanics.

Once one realizes that QED is non-relativistic in the standard view, there is no special problem for Bohmian Mechanics.
 
  • Like
Likes   Reactions: Demystifier
  • #14
https://arxiv.org/abs/0808.0082

Can Lorentz invariance be maintained if there is an energy cutoff?

https://arxiv.org/abs/hep-lat/0211036 mentions other regularizations like dimensional regularization, but they are not gauge invariant. Also, it is not clear tha the other regularization construct a quantum theory. On the other hand, the lattice regularization does construct a quantum theory, from which Lorentz invariant QED can in principle emerge as a low energy effective theory.

http://www.staff.science.uu.nl/~hooft101/lectures/basisqft.pdf also mentions that one starts the construction of QFT with a lattice.

Certainly, asymptotic safety might still be possible. But till then, if we take the Wilsonian viewpoint, lattice QED gives us a secure conceptual starting point (although it is of course impractical for calculations).
 
  • Like
Likes   Reactions: Demystifier
  • #15
stevendaryl said:
So it's not a good example if you're wanting to show that Lorentz invariance can arise natural as a continuum approximation to a non-invariant theory.
A much better example is classical sound and corresponding quantum phonons. Sound satisfies a continuous Lorentz-invariant wave equation (with velocity of sound instead of velocity of light). Yet, it emerges from non-relativistic discrete theory of atoms. At the quantum level it illuminates particle creation/destruction in QFT, in the sense that creation and destruction of phonons really originates from processes in which no actual particles (atoms) are created or destructed.
 
  • #16
atyy said:
dimensional regularization, but they are not gauge invariant.
dimensional regularization is gauge invariant. Indeed, this is one of the main reasons why it is used.
 
  • Like
Likes   Reactions: Demystifier
  • #17
atyy said:
http://www.staff.science.uu.nl/~hooft101/lectures/basisqft.pdf also mentions that one starts the construction of QFT with a lattice.
and ends with a covariant theory. You take the start for the end. None of the references stops at the lattice. Their goal is always to get the covariant, physical theory, not the regularized one.

One gets the 10-decimal agreement of the anomalous magnetic moment only starting with the covariant version (and then making approximations, but not lattice approximations).
 
Last edited:
  • #18
atyy said:
Lorentz invariant QED can in principle emerge as a low energy effective theory.
1-loop Lorentz invariant QED is fully (and higher loop QED conceptually) constructed without any cutoff or regularization or lattices in Scharf's book on quantum electrodynamics. And his book on a true ghost story does the same for other gauge theories.
 
Last edited:
  • #19
Demystifier said:
A much better example is classical sound and corresponding quantum phonons. Sound satisfies a continuous Lorentz-invariant wave equation (with velocity of sound instead of velocity of light). Yet, it emerges from non-relativistic discrete theory of atoms.
Yes, but it is not a good example to argue that
atyy said:
QED is non-relativistic in the standard view
atyy has a very nonstandard understanding of the meaning of the word ''standard''. He means by it ''his personal standards'', not the standard of the current state of the art in physics.
 
  • #20
A. Neumaier said:
atyy has a very nonstandard understanding of the meaning of the word ''standard''. He means by it ''his personal standards'', not the standard of the current state of the art in physics.
The viewpoint that @atyy advocates is not the standard viewpoint, but is a standard viewpoint.
 
  • #21
Demystifier said:
The viewpoint that @atyy advocates is not the standard viewpoint, but is a standard viewpoint.
according to which standard? Anyone can define his own standard. But to deserve the word, a standard must be agreed upon. Is it perhaps the standard adopted by the Bohmian mechanics camp?

Whoever agrees to this standard has very low standards indeed.
 
  • #22
atyy said:
The point is simple: my statements on lattice QED and QED are absolutely standard, although you may not like them, take for example: http://www.staff.science.uu.nl/~hooft101/lectures/basisqft.pdf, https://arxiv.org/abs/hep-lat/0211036.

There is of course fine tuning (without taking the lattice spacing to zero) so that the right low energy limit occurs, but all of this fine tuning is needed in the standard view of QED, and has nothing to do with Bohmian Mechanics.

Once one realizes that QED is non-relativistic in the standard view, there is no special problem for Bohmian Mechanics.
It makes little sense to claim that what is called by everyone relativistic QED is actually nonrelativistic QED, even people working on the latter make this distinction and knows what the difference between them is so clearly it can't be the standard view that relativistic QED is non-relativistic.
You may have the personal view that ultimately RQED is in some sense nonrelativistic and that may be debatable, but implying that lattice QED is the way to go is not very reasonable when its predictions are much poorer that RQED.
The Poincare invariance is obviously local (even if the hope is to prove that is rigourously global and therefore nonperturbative, but that hasn't been achieved so it is just a believe, ironically backed by results in the lattice), it is achieved order by order and term by term. And in practice that is all what's needed for precise predicitions to many decimal positions.
So I guess when you say it is not relativistic you refer to the order by order limitation, but that is not what is meant (mathematically in strict sense the restricted Lorentz group plus infinitesimal translations) when referring to QED as being Poincare invariant(even if in some textbooks and in some physicists minds both meanings of Poincare invariance, perturbative and nonperturbative, are conflated due to wishful thinking that assumes the latter as already achieved but simply lacking a formal proof as a minor detail.
 
  • #23
A. Neumaier said:
according to which standard? Anyone can define his own standard. But to deserve the word, a standard must be agreed upon. Is it perhaps the standard adopted by the Bohmian mechanics camp?

Whoever agrees to this standard has very low standards indeed.
The Wilsonian viewpoint of renormalization is quite standard (and has nothing to do with BM camp).
 
Last edited:
  • #24
Demystifier said:
The Wilsonian viewpoint of renormalization is quite standard (and gas nothing to do with BM camp).
Most effective field theories considered in particle physics are relativistic, and Wilson's renormalization group mediates between relativistic effective QFTs at various energies.

Invoking Wilson to justify an ideosyncratic ''standard'' is just a smokescreen.
 
  • #25
A. Neumaier said:
Most effective field theories considered in particle physics are relativistic, and Wilson's renormalization group mediates between relativistic effective QFTs at various energies.
You have a too narrow view of Wilsonian RG, which is somewhat typical for high-energy physicists. By Wilsonian RG, the effective theory at large distances may have very different symmetries than the fundamental theory at small distances, which is related to the fact that "renormalizaton group" is not really a group. Generally, this point is much better understood in condensed-matter community than in high-energy community.
 
  • #26
Demystifier said:
You have a too narrow view of Wilsonian RG, which is somewhat typical for high-energy physicists. By Wilsonian RG, the effective theory at large distances may have very different symmetries than the fundamental theory at small distances, which is related to the fact that "renormalizaton group" is not really a group. Generally, this point is much better understood in condensed-matter community than in high-energy community.
I didn't intend to summarize in one sentence the whole range of appications of Wildon's RG ideas.

Wilson's ideas have nothing to do with the distinction between relativistic and nonrelativistic. As I pointed out, they also apply to relativistic effective theories without any intermediate nonrelativistic intermediate, and hence cannot be used to justify that a relativistic theory is fundamentally nonrelativistic.

It can be used that a relativistic theory might be the effective theory of an underlying nonrelativistic theory, but whether the latter is actually the case is a completely different question. In fact, nobody has succeeded so far to derive QED as an effective theory of an underlying nonrelativistic theory, so whether this is possible is merely speculation.

Moreover, atyy had argued the opposite way, that the lattice approximation is already QED. This is not at all justified by Wilson's RG which loses degrees of freedom and only goes from an approximation to a coarser one. You can make a coarser lattice theory from a fine one by using Wilson's RG. But the latter is completely silent about the opposite direction, to get QED from its lattice approximations.
 
  • #27
A. Neumaier said:
It can be used that a relativistic theory might be the effective theory of an underlying nonrelativistic theory, but whether the latter is actually the case is a completely different question.
Good point.

A. Neumaier said:
Moreover, atyy had argued the opposite way, that the lattice approximation is already QED.
Outside of the lattice community it looks wrong, but in the lattice community it may be a standard view.
 
  • #28
Demystifier said:
in the lattice community it may be a standard view.
Why ''may be''? One can claim anything in the subjunctive, it means nothing.

I never have seen such a claim by those pursuing lattice QFT.
They never claim the results of covariant computations as successes of their lattice theories.
 
  • #29
Demystifier said:
Outside of the lattice community it looks wrong, but in the lattice community it may be a standard view.
The lattice community distinguishes perfectly relativistic from nonrelativistic QED, and doesn't call the former nonrelativistic nor claims the latter to be the standard QED.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 376 ·
13
Replies
376
Views
23K
  • · Replies 37 ·
2
Replies
37
Views
4K
Replies
87
Views
9K
  • · Replies 37 ·
2
Replies
37
Views
7K
  • · Replies 87 ·
3
Replies
87
Views
8K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 62 ·
3
Replies
62
Views
11K
  • · Replies 23 ·
Replies
23
Views
7K
Replies
26
Views
18K