It is just a matter of belief, not of demonstration. Whereas it is a well-known fact that QED is Poincare invariant in each finite loop approximation. and is demonstated to have a predictive power far beyond QCD. What happens at energies above the Planck scale is completely irrelevant for QED; it is a matter for the future unified theory.
Perturbative QED does not suffer from the Landau pole; only a nonperturbative version possibly does, if one attempts to construct the theory using lattices (!) or using a cutoff. The Landau pole invalidates a construction only if the (lattice or energy) cutoff has to move through the pole in order to provide a covariant limit.
On the other hand, while the causal, covariant construction of QED also has a Landau pole, Landau's argument that a Landau pole invalidates perturbation theory no longer applies to this version. In the causal construction there are no cutoffs that must be sent to zero or infinity and move through the pole. The pole is only in the choice of the renormalization point (or mass ##M##). But in the exact theory, the theory is completely independent of this renormalization point; so it can be chosen at low energy without invalidating the construction!
The associated Callan-Symanzik equation shows how the observables depend on the chosen renormalization mass ##M##, giving an identical theory - apart from truncation errors, which are of course small only if ##M## is of the order of the energies at which predictions are made. Thus for any range of ##M## for which the Callan-Symanzik equation is solvable, one gets the same theory. The Landau pole found (nonrigorously) in causal QED in the Callan-Symanzik equation only means that one cannot connect the theory defined by a superhigh renormalization point irrelevant for the physics of the universe to the theory defined by a renormalization point below the Landau pole. This is a harmless situation.
It is quite different from Landau's argument that the cutoff cannot be removed because on the way from a small cutoff energy to an infinite cutoff energy perturbation theory becomes invalid since the terms become infinite when the cutoff passes the pole. This means that perturbation theory fails close to this cutoff. Thus any approximate construction with cutoff featuring a Landau pole cannot be made to approximate the covariant QED to arbitrary precision. In particular,
the Landau pole believed to exist in lattice QED is of this fatal kind and proves (at this level of rigor) that lattice QED can never approach the covariant QED, hence is a fake theory. Your insistence on the Landau pole defeats even your basic goal!