Is $s$ the unique vector that spans the solution space $L(A,0)$?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Space
Click For Summary
SUMMARY

The discussion centers on the uniqueness of the vector $s$ that spans the solution space $L(A,0)$ for a matrix $A \in K^{(n-1) \times n}$ with rank $n-1$. Participants confirm that the vector $s$ is uniquely defined due to the dimension of the kernel being 1, as established by the rank-nullity theorem. The determinant expansion using the Laplace formula is utilized to derive the relationship $\det \left [\left (\frac{A}{z}\right )\right ] = z \cdot s$, reinforcing that $s$ lies in the kernel of $A$. The conclusion is that $s$ is the sole basis vector for the solution space.

PREREQUISITES
  • Understanding of linear algebra concepts such as matrix rank and kernel.
  • Familiarity with determinants and the Laplace expansion method.
  • Knowledge of the rank-nullity theorem and its implications.
  • Basic proficiency in vector spaces and their properties.
NEXT STEPS
  • Study the rank-nullity theorem in detail to understand its applications in linear algebra.
  • Learn about the properties of determinants and their role in linear transformations.
  • Explore the concept of vector spaces and bases, particularly in the context of solution spaces.
  • Investigate the implications of unique solutions in systems of linear equations.
USEFUL FOR

Mathematics students, educators, and professionals in fields requiring linear algebra expertise, particularly those focusing on vector spaces and determinants.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

For a field $K$ and $1<n\in \mathbb{N}$ let $A\in K^{(n-1)\times n}$ aa matrix with rank $n-1$. For a row vector $z\in K^{1\times n}$ let $\left (\frac{A}{z}\right )\in K^{n\times n}$ be the matrix that we get if we add as the $n$-th row of the matrix $A$ the vector $z$.

To show that there is a column vector $s=(s_1, \ldots , s_n)^T$ such that for each row vector $z=(z_1, \ldots , z_n)$ it holds $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i=z\cdot s$$ we consider the laplace formula for the clculation of the determinant. We expand for the last row. For $i\in \{1, \ldots , n\}$ let $A_i$ be the submatrix of$A$ if we remove the $i$-th columnn and $s_i:=(-1)^{i+n}\det A_i$.

Then we get $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i$$

Is this correct? (Wondering) We wcould also for an other row or column, right?I want to show that the vector $s$ spans the solution space $L(A,0)$ of the linear system of equations $A\cdot x=0$ as a $K$-vector space.

How could we do that? Could you give me a hint? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
To show that there is a column vector $s=(s_1, \ldots , s_n)^T$ such that for each row vector $z=(z_1, \ldots , z_n)$ it holds $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i=z\cdot s$$ we consider the laplace formula for the clculation of the determinant. We expand for the last row. For $i\in \{1, \ldots , n\}$ let $A_i$ be the submatrix of$A$ if we remove the $i$-th columnn and $s_i:=(-1)^{i+n}\det A_i$.

Then we get $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i$$

Is this correct?

Hey mathmari!

Yep.

mathmari said:
We wcould also for an other row or column, right?

Didn't we already do it for all rows and columns? (Thinking)

mathmari said:
I want to show that the vector $s$ spans the solution space $L(A,0)$ of the linear system of equations $A\cdot x=0$ as a $K$-vector space.

How could we do that? Could you give me a hint?

What is the rank of the solution space $L(A,0)$?
Is $\mathbf s$ unique and non-zero?
What is $A\cdot\mathbf s$? (Wondering)
 
I like Serena said:
Didn't we already do it for all rows and columns? (Thinking)

What do you mean? (Wondering)
I like Serena said:
What is the rank of the solution space $L(A,0)$?
Is $\mathbf s$ unique and non-zero?
What is $A\cdot\mathbf s$? (Wondering)

The solution space is equal the kernel of$A$, right?

$s$ is uniquely defined.

We have that $\text{Rank}(A)=n-1$ so from the formula of dimensions we get that $\dim (\ker(A))=1$. That means that the basis of the solution space contains only one element.

If $z$ is an arbitrary row of $A$, $z=a_i, \forall i$, then $a_i\cdot s=0$. That means that $A\cdot s=0$, so $s\in \ker (A)$, and so $s$ is contained in the soution space.

From that we get the desired result, right? (Wondering)
 
mathmari said:
What do you mean?

Didn't we find each of the $s_i$ by working through each of the columns?
And by using all rows to find the sub determinant $\det(A_i)$? (Wondering)

mathmari said:
The solution space is equal the kernel of$A$, right?

$s$ is uniquely defined.

We have that $\text{Rank}(A)=n-1$ so from the formula of dimensions we get that $\dim (\ker(A))=1$. That means that the basis of the solution space contains only one element.

If $z$ is an arbitrary row of $A$, $z=a_i, \forall i$, then $a_i\cdot s=0$. That means that $A\cdot s=0$, so $s\in \ker (A)$, and so $s$ is contained in the soution space.

From that we get the desired result, right?

Suppose $\mathbf s$ is the zero vector. Then all these statements are true, but we still don't get the desired result do we? (Wondering)

How did you find that $\mathbf s$ is unique?
You did find that there is at least one $\mathbf s$, but there could still be more, couldn't there? (Wondering)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K