MHB Is $s$ the unique vector that spans the solution space $L(A,0)$?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Space
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

For a field $K$ and $1<n\in \mathbb{N}$ let $A\in K^{(n-1)\times n}$ aa matrix with rank $n-1$. For a row vector $z\in K^{1\times n}$ let $\left (\frac{A}{z}\right )\in K^{n\times n}$ be the matrix that we get if we add as the $n$-th row of the matrix $A$ the vector $z$.

To show that there is a column vector $s=(s_1, \ldots , s_n)^T$ such that for each row vector $z=(z_1, \ldots , z_n)$ it holds $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i=z\cdot s$$ we consider the laplace formula for the clculation of the determinant. We expand for the last row. For $i\in \{1, \ldots , n\}$ let $A_i$ be the submatrix of$A$ if we remove the $i$-th columnn and $s_i:=(-1)^{i+n}\det A_i$.

Then we get $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i$$

Is this correct? (Wondering) We wcould also for an other row or column, right?I want to show that the vector $s$ spans the solution space $L(A,0)$ of the linear system of equations $A\cdot x=0$ as a $K$-vector space.

How could we do that? Could you give me a hint? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
To show that there is a column vector $s=(s_1, \ldots , s_n)^T$ such that for each row vector $z=(z_1, \ldots , z_n)$ it holds $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i=z\cdot s$$ we consider the laplace formula for the clculation of the determinant. We expand for the last row. For $i\in \{1, \ldots , n\}$ let $A_i$ be the submatrix of$A$ if we remove the $i$-th columnn and $s_i:=(-1)^{i+n}\det A_i$.

Then we get $$\det \left [\left (\frac{A}{z}\right )\right ]=\sum_{i=1}^nz_is_i$$

Is this correct?

Hey mathmari!

Yep.

mathmari said:
We wcould also for an other row or column, right?

Didn't we already do it for all rows and columns? (Thinking)

mathmari said:
I want to show that the vector $s$ spans the solution space $L(A,0)$ of the linear system of equations $A\cdot x=0$ as a $K$-vector space.

How could we do that? Could you give me a hint?

What is the rank of the solution space $L(A,0)$?
Is $\mathbf s$ unique and non-zero?
What is $A\cdot\mathbf s$? (Wondering)
 
I like Serena said:
Didn't we already do it for all rows and columns? (Thinking)

What do you mean? (Wondering)
I like Serena said:
What is the rank of the solution space $L(A,0)$?
Is $\mathbf s$ unique and non-zero?
What is $A\cdot\mathbf s$? (Wondering)

The solution space is equal the kernel of$A$, right?

$s$ is uniquely defined.

We have that $\text{Rank}(A)=n-1$ so from the formula of dimensions we get that $\dim (\ker(A))=1$. That means that the basis of the solution space contains only one element.

If $z$ is an arbitrary row of $A$, $z=a_i, \forall i$, then $a_i\cdot s=0$. That means that $A\cdot s=0$, so $s\in \ker (A)$, and so $s$ is contained in the soution space.

From that we get the desired result, right? (Wondering)
 
mathmari said:
What do you mean?

Didn't we find each of the $s_i$ by working through each of the columns?
And by using all rows to find the sub determinant $\det(A_i)$? (Wondering)

mathmari said:
The solution space is equal the kernel of$A$, right?

$s$ is uniquely defined.

We have that $\text{Rank}(A)=n-1$ so from the formula of dimensions we get that $\dim (\ker(A))=1$. That means that the basis of the solution space contains only one element.

If $z$ is an arbitrary row of $A$, $z=a_i, \forall i$, then $a_i\cdot s=0$. That means that $A\cdot s=0$, so $s\in \ker (A)$, and so $s$ is contained in the soution space.

From that we get the desired result, right?

Suppose $\mathbf s$ is the zero vector. Then all these statements are true, but we still don't get the desired result do we? (Wondering)

How did you find that $\mathbf s$ is unique?
You did find that there is at least one $\mathbf s$, but there could still be more, couldn't there? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top