Is Set M1 Convex? A Proof Using Mathematical Induction

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Convex Set
Click For Summary
SUMMARY

The set \( M_1 = \{ x \in [0, \infty)^2 \mid f(x_1, x_2) > 1 \} \), where \( f(x_1, x_2) = x_1 \cdot x_2^2 \), is proven to be convex. The proof utilizes the property that the function \( y = \frac{1}{\sqrt{x}} \) is convex, and since \( M_1 \) consists of points lying above this graph, it follows that \( M_1 \) is a convex set. The discussion highlights the use of mathematical induction and properties of convex functions to establish this conclusion definitively.

PREREQUISITES
  • Understanding of convex functions and their properties
  • Familiarity with mathematical induction techniques
  • Knowledge of basic calculus, including derivatives
  • Ability to manipulate inequalities and functions in two variables
NEXT STEPS
  • Study the properties of convex functions in detail
  • Learn about the application of mathematical induction in proofs
  • Explore the implications of the second derivative test for convexity
  • Investigate the relationship between convex sets and their boundary functions
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in the properties of convex sets and functions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the function $\displaystyle{y=f(x_1, x_2)=x_1\cdot x_2^2}$ and the set $M_1=\{x\in [0, \infty)^2 \mid f(x_1, x_2)>1\}$.

I want to check if the set is convex. Let $x=(x_1, x_2) , y=(y_1, y_2)\in M_1$, then $x_1\cdot x_2^2>1$ and $y_1\cdot y_2^2>1$.

We want to show that \begin{equation*}\lambda x+(1-\lambda )y=\lambda (x_1, x_2)+(1-\lambda )(y_1, y_2)=(\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2)\in M_1\end{equation*} so we have to show that \begin{equation*}f\left (\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2\right )>1\end{equation*}

We have the following:
\begin{align*}f&\left (\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2\right )=(\lambda x_1+(1-\lambda )y_1)\cdot( \lambda x_2 +(1-\lambda )y_2)^2 \\ &=(\lambda x_1+(1-\lambda )y_1)\cdot( \lambda^2 x_2^2+2\lambda x_2(1-\lambda )y_2 +(1-\lambda )^2y_2^2)\\ &= \lambda x_1\cdot( \lambda^2 x_2^2+2\lambda (1-\lambda )x_2y_2 +(1-\lambda )^2y_2^2)+(1-\lambda )y_1\cdot( \lambda^2 x_2^2+2\lambda (1-\lambda )x_2y_2 +(1-\lambda )^2y_2^2) \\ & = \lambda^3 x_1x_2^2+2\lambda^2 (1-\lambda )x_1 x_2y_2 +\lambda (1-\lambda )^2x_1 y_2^2+ \lambda^2 (1-\lambda )x_2^2y_1+2\lambda (1-\lambda )^2x_2y_1y_2 +(1-\lambda )^3y_1y_2^2 \\ & > \lambda^3 +2\lambda^2 (1-\lambda )x_1 x_2y_2 +\lambda (1-\lambda )^2x_1 y_2^2+ \lambda^2 (1-\lambda )x_2^2y_1+2\lambda (1-\lambda )^2x_2y_1y_2 +(1-\lambda )^3\end{align*}

Is this correct so far? (Wondering)

How could we continue? (Wondering)
 
Physics news on Phys.org
mathmari said:
We have the function $\displaystyle{y=f(x_1, x_2)=x_1\cdot x_2^2}$ and the set $M_1=\{x\in [0, \infty)^2 \mid f(x_1, x_2)>1\}$.
I want to check if the set is convex.
Let $x=(x_1, x_2) , y=(y_1, y_2)\in M_1$, then $x_1\cdot x_2^2>1$ and $y_1\cdot y_2^2>1$.
We want to show that \begin{equation*}\lambda x+(1-\lambda )y=\lambda (x_1, x_2)+(1-\lambda )(y_1, y_2)=(\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2)\in M_1\end{equation*} so we have to show that \begin{equation*}f\left (\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2\right )>1\end{equation*}
We have the following:
\begin{align*}f&\left (\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2\right )=(\lambda x_1+(1-\lambda )y_1)\cdot( \lambda x_2 +(1-\lambda )y_2)^2 \\ &=(\lambda x_1+(1-\lambda )y_1)\cdot( \lambda^2 x_2^2+2\lambda x_2(1-\lambda )y_2 +(1-\lambda )^2y_2^2)\\ &= \lambda x_1\cdot( \lambda^2 x_2^2+2\lambda (1-\lambda )x_2y_2 +(1-\lambda )^2y_2^2)+(1-\lambda )y_1\cdot( \lambda^2 x_2^2+2\lambda (1-\lambda )x_2y_2 +(1-\lambda )^2y_2^2) \\ & = \lambda^3 x_1x_2^2+2\lambda^2 (1-\lambda )x_1 x_2y_2 +\lambda (1-\lambda )^2x_1 y_2^2+ \lambda^2 (1-\lambda )x_2^2y_1+2\lambda (1-\lambda )^2x_2y_1y_2 +(1-\lambda )^3y_1y_2^2 \\ & > \lambda^3 +2\lambda^2 (1-\lambda )x_1 x_2y_2 +\lambda (1-\lambda )^2x_1 y_2^2+ \lambda^2 (1-\lambda )x_2^2y_1+2\lambda (1-\lambda )^2x_2y_1y_2 +(1-\lambda )^3\end{align*}

Is this correct so far? (Wondering)
It may be correct, but it's too complicated to be helpful. I would be surprised if you could solve this problem by working directly from the definition of convexity.

The condition for $(x,y)$ to be in $M_1$ is $xy^2>1.$ If you write that as $y > \dfrac1{\sqrt x}$, it says that $(x,y)$ lies above the graph of the function $y = \dfrac1{\sqrt x}$. But that function is a convex function (because its second derivative is positive), and there is then a theorem to say that the region above its graph is a convex set.
 
I got it! (Nerd)

Thank you very much! (Smile)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
26
Views
5K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K