CB: strategy at line 3; please unpick this for me
CaptainBlack said:
You are making a meal of this. Rewrite as:
\[ f(x) = x^{-1}(5-2x)^{-1/2}\]
then using the product rule:
\[\begin{aligned}f'(x)&=(-1)x^{-2}(5-2x)^{-1/2}+x^{-1}(-1/2)(5-2x)^{-3/2}(-2)\\ \\ &=-x^{-1}f(x)+f(x)(5-2x)\\ \\&=f(x)\left[-\frac{1}{x}+\frac{1}{5-2x} \right]\\ \\ &=f(x)\left[ \frac{3x-5}{x(5-2x)}\right] \\ \\ &= \frac{3x-5} {x^2(5-2x)^{3/2}}\end{aligned}\]
Hello CB,
I note with interest the 2nd line of your calculations after: "using the product rule", which is
$$=x^{-1}(f(x)+f(x)(5-2x)$$
Would you kindly:
1) explain what is behind this move?
It looks like you are factoring out f(x) from both sides of the addition. Is that right? If so, could you enlighten me as to the arithmetic/logic involved?
(Looks like whatever it is, they didn't show us in class the other day when introducing the product rule, and looks like this would make these problems a hell of a lot easier to deal with)
(Edited 1 hour later) I have just surprised myself to see how easy, pleasant and fun it was to apply basic algebra and advance
myself towards an answer to question (1) above:
(Edited 1 hour 30 mins from original post) {On further testing my hypothesis, set out below, I realize it is wrong, making what follows redundant, but perhaps not entirely: I will let it stand as an example of "going off half-cocked" with the result: shot in the pants!}
It goes like this (plse comment, emend, correct, contradict as and where appropriate (Nerd) )
Let $x^{-1}=u$
and $(5-2x)^{-1/2}=v$
Since $f'(x)=(u'v)+(uv')$ then, your equation $f'(x)=\left(x^-1(f(x))+(f(x)\times(5-2x)\right)$ implies that $f'(x)=u^2v+v^2u$ which can then be factored as:
$(uv)(u+v)$ (a very interesting result, if my reasoning is correct, which no-one told
me about at school (Headbang))
Now,since $f(x)=(uv)$ this explains why you were able to write $f'(x)$ as the sum of $u(uv)$ and $v(vu)$ at line 2 of your calculations.
Am I right?
If so, it is then simply a matter of factoring $f(x)$ outside square brackets in the next line. And, if I am right, would this be the way to go
as a point of "best practice" when working on
all such problems?
Finally, if I
have, if fact, anwered question (1) please go ahead and answer the next 2 typographical questions, or direct me to a convenient and usable (searchable) source of such short-cuts:
2) explain the short-cut I see in your latex "&="
3) tell me how to make a "hotkey" for things like "\begin{aligned}" so as to avoid having to type it out in full every time I want to use it
(Edited 1 hour 30 mins from original post) {On further testing my hypothesis, set out above, I realize it is wrong, making it largely redundant, but perhaps not entirely: I will let it stand as an example of "going off half-cocked" with the result: shot in the pants!}
Regs,
DeusAbs