MHB Is the Composition of Functions $F$ and $G$ Correct?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Dustinsfl
Messages
2,217
Reaction score
5
$F(x) = x + 5\qquad\qquad G(x) = \frac{|x|}{x}, \ \text{if} \ x\neq 0, \ G(0) = 1$

$G(F(x)) = G(x + 5) = \frac{|x + 5|}{x + 5} = \begin{cases}
1 & \text{if} \ x \geq 0\\
-1 & \text{if} \ x\in (0,-5)\cup (-5,\infty)
\end{cases}$

Is the correct for the composition?
 
Mathematics news on Phys.org
I'm not sure I'd quite agree yet. I would do
$$G(F(x))=G(x+5)=\begin{cases}\frac{|x+5|}{x+5}, \quad & x+5\not=0\\
1, \quad & x+5=0\end{cases},$$
and go from there.
 
Ackbach said:
I'm not sure I'd quite agree yet. I would do
$$G(F(x))=G(x+5)=\begin{cases}\frac{|x+5|}{x+5}, \quad & x+5\not=0\\
1, \quad & x+5=0\end{cases},$$
and go from there.

View attachment 325
I just graphed it and it looks right.
 
I agree with Ackbach. Perhaps it would be better if you just worked with the definition of $G$ as given instead of breaking it into exact expressions.
 
dwsmith said:
$F(x) = x + 5\qquad\qquad G(x) = \frac{|x|}{x}, \ \text{if} \ x\neq 0, \ G(0) = 1$

$G(F(x)) = G(x + 5) = \frac{|x + 5|}{x + 5} = \begin{cases}
1 & \text{if} \ x \geq 0\\
-1 & \text{if} \ x\in (0,-5)\cup (-5,\infty)
\end{cases}$

Is the correct for the composition?

Your definition has a conflict in it. Suppose $x=1$. Then it satisfies $x\geq 0$ as well as being in the interval $(-5,\infty)$. So $G \circ F$ would evaluate both to $+1$ and $-1$. Therefore, the composition you have defined there is not a function, but a relation. Either that, or it's an ill-defined function.
 
dwsmith said:
View attachment 325
I just graphed it and it looks right.

What exact commands did you execute to produce this graph?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top