MHB Is the Condition Number of A'A Related to its Matrix Norm?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Condition
Click For Summary
The discussion focuses on the relationship between the condition number of a matrix \( A \) and its transpose \( A^T \). It is established that the condition number \( k_2(A^TA) \) can be expressed as \( (k_2(A))^2 \). The participants explore the definitions of matrix norms and the implications of maximizing certain quadratic forms involving \( A \) and \( A^TA \). The conversation highlights the need for clarity in understanding how these norms and condition numbers relate to each other, particularly in the context of unit vectors. Ultimately, the discussion emphasizes the mathematical connections between the condition numbers and the properties of the matrices involved.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have a matrix $A\in \mathbb{R}^{m\times n}$ which has the rank $n$. The condition number is defined as $\displaystyle{k(A)=\frac{\max_{\|x\|=1}\|Ax\|}{\min_{\|x\|=1}\|Ax\|}}$.

I want to show that $k_2(A^TA)=\left (k_2(A)\right )^2$. We have that $$k_2(A^TA)=\frac{\max_{\|x\|_2=1}\|(A^TA)x\|_2}{\min_{\|x\|_2=1}\|(A^TA)x\|_2}$$

It holds that $$\|(A^TA)x\|_2=\left ((A^TA)x, (A^TA)x\right )=\left (A^TAx\right )^T\left (A^TAx\right )=x^TA^TAA^TAx=\left (Ax\right )^T\left (AA^T\right )\left (Ax\right )$$
We also have that $$\|Ax\|_2=\left (Ax, Ax\right )=\left (Ax\right )^T\left (Ax\right )=x^TA^TAx=x^T\left (A^TA\right )x$$

How do we continue? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari!

Shouldn't it be $\|Ax\|_2 = \sqrt{(Ax,Ax)}$ or $\|Ax\|_2^2 = (Ax,Ax)$? (Worried)

So we have:
$$\|Ax\|_2^2=x^T\left (A^TA\right )x$$

We also have:
$$\|(A^TA)x\|_2^2=x^TA^TAA^TAx=x^T(A^TA)^2x$$

Suppose $x$ is a vector of unit length for which $x^T\left (A^TA\right )x$ takes on its maximal value.
Then $x^T(A^TA)^2x$ will also take its maximal value, won't it? (Wondering)
 
Klaas van Aarsen said:
Shouldn't it be $\|Ax\|_2 = \sqrt{(Ax,Ax)}$ or $\|Ax\|_2^2 = (Ax,Ax)$? (Worried)

Ohh yes! (Blush)
Klaas van Aarsen said:
So we have:
$$\|Ax\|_2^2=x^T\left (A^TA\right )x$$

We also have:
$$\|(A^TA)x\|_2^2=x^TA^TAA^TAx=x^T(A^TA)^2x$$

Suppose $x$ is a vector of unit length for which $x^T\left (A^TA\right )x$ takes on its maximal value.
Then $x^T(A^TA)^2x$ will also take its maximal value, won't it? (Wondering)

Will $x^T(A^TA)^2x$ take also its maximal value because the term in the middle is the square of the previous one? (Wondering)
 
mathmari said:
Will $x^T(A^TA)^2x$ take also its maximal value because the term in the middle is the square of the previous one?

Well, to be fair, this is not immediately obvious. (Worried)

Let's take a slightly different angle.

According to the wiki page about matrix norms, a matrix $A$ has norm $\|A\|_2 =\sup\limits_{\|x\|=1} \|Ax\|_2 = \sqrt{\lambda_{\text{max}}(A^*A)}=\sigma_{\text{max}}(A)$, where $A^*$ is the conjugate transpose, which is just the transpose $A^T$ for a real matrix.

So $\|A^TA\|_2 = \sqrt{\lambda_{\text{max}}((A^TA)^T A^TA)}$, isn't it? (Wondering)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
4
Views
2K
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
850
  • · Replies 1 ·
Replies
1
Views
10K
Replies
6
Views
2K