Is the Condition Number of A'A Related to its Matrix Norm?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Condition
Click For Summary

Discussion Overview

The discussion revolves around the relationship between the condition number of the matrix product \( A^TA \) and the condition number of the matrix \( A \) itself, specifically exploring whether \( k_2(A^TA) = (k_2(A))^2 \) holds true. The conversation includes mathematical reasoning and exploration of matrix norms and properties.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant defines the condition number of a matrix \( A \) and expresses a desire to show that \( k_2(A^TA) = (k_2(A))^2 \).
  • Another participant questions the notation used for the norm of \( Ax \) and clarifies that \( \|Ax\|_2^2 = (Ax, Ax) \).
  • There is a suggestion that if \( x \) is a unit vector maximizing \( x^T(A^TA)x \), then \( x^T(A^TA)^2x \) will also achieve its maximal value.
  • A later reply expresses uncertainty about whether \( x^T(A^TA)^2x \) will take its maximal value based solely on the relationship to the previous term.
  • One participant introduces the concept of matrix norms and relates the norm of \( A^TA \) to the maximum eigenvalue of \( (A^TA)^T A^TA \).

Areas of Agreement / Disagreement

Participants express uncertainty and raise questions about the relationships and properties discussed, indicating that the discussion remains unresolved with multiple viewpoints presented.

Contextual Notes

There are limitations in the assumptions made regarding the properties of the matrices involved, and the discussion does not resolve the mathematical steps or relationships definitively.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have a matrix $A\in \mathbb{R}^{m\times n}$ which has the rank $n$. The condition number is defined as $\displaystyle{k(A)=\frac{\max_{\|x\|=1}\|Ax\|}{\min_{\|x\|=1}\|Ax\|}}$.

I want to show that $k_2(A^TA)=\left (k_2(A)\right )^2$. We have that $$k_2(A^TA)=\frac{\max_{\|x\|_2=1}\|(A^TA)x\|_2}{\min_{\|x\|_2=1}\|(A^TA)x\|_2}$$

It holds that $$\|(A^TA)x\|_2=\left ((A^TA)x, (A^TA)x\right )=\left (A^TAx\right )^T\left (A^TAx\right )=x^TA^TAA^TAx=\left (Ax\right )^T\left (AA^T\right )\left (Ax\right )$$
We also have that $$\|Ax\|_2=\left (Ax, Ax\right )=\left (Ax\right )^T\left (Ax\right )=x^TA^TAx=x^T\left (A^TA\right )x$$

How do we continue? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

Shouldn't it be $\|Ax\|_2 = \sqrt{(Ax,Ax)}$ or $\|Ax\|_2^2 = (Ax,Ax)$? (Worried)

So we have:
$$\|Ax\|_2^2=x^T\left (A^TA\right )x$$

We also have:
$$\|(A^TA)x\|_2^2=x^TA^TAA^TAx=x^T(A^TA)^2x$$

Suppose $x$ is a vector of unit length for which $x^T\left (A^TA\right )x$ takes on its maximal value.
Then $x^T(A^TA)^2x$ will also take its maximal value, won't it? (Wondering)
 
Klaas van Aarsen said:
Shouldn't it be $\|Ax\|_2 = \sqrt{(Ax,Ax)}$ or $\|Ax\|_2^2 = (Ax,Ax)$? (Worried)

Ohh yes! (Blush)
Klaas van Aarsen said:
So we have:
$$\|Ax\|_2^2=x^T\left (A^TA\right )x$$

We also have:
$$\|(A^TA)x\|_2^2=x^TA^TAA^TAx=x^T(A^TA)^2x$$

Suppose $x$ is a vector of unit length for which $x^T\left (A^TA\right )x$ takes on its maximal value.
Then $x^T(A^TA)^2x$ will also take its maximal value, won't it? (Wondering)

Will $x^T(A^TA)^2x$ take also its maximal value because the term in the middle is the square of the previous one? (Wondering)
 
mathmari said:
Will $x^T(A^TA)^2x$ take also its maximal value because the term in the middle is the square of the previous one?

Well, to be fair, this is not immediately obvious. (Worried)

Let's take a slightly different angle.

According to the wiki page about matrix norms, a matrix $A$ has norm $\|A\|_2 =\sup\limits_{\|x\|=1} \|Ax\|_2 = \sqrt{\lambda_{\text{max}}(A^*A)}=\sigma_{\text{max}}(A)$, where $A^*$ is the conjugate transpose, which is just the transpose $A^T$ for a real matrix.

So $\|A^TA\|_2 = \sqrt{\lambda_{\text{max}}((A^TA)^T A^TA)}$, isn't it? (Wondering)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
12
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K