Is the Converse of the Given Statement True for Any Positive Integer n?

  • Context: MHB 
  • Thread starter Thread starter johnny009
  • Start date Start date
  • Tags Tags
    Proof Structure
Click For Summary
SUMMARY

The discussion centers on the mathematical statement regarding positive integers, specifically examining whether the converse of the statement "if n is prime, then a is not a perfect square" holds true for any integer n. Participants provided examples with prime numbers such as 3 and 5, demonstrating that in these cases, a resulted in perfect squares. However, counterexamples were also presented, such as when n equals 6, where a was not a perfect square, indicating that the converse does not hold universally.

PREREQUISITES
  • Understanding of prime numbers and their properties
  • Basic knowledge of perfect squares
  • Familiarity with mathematical notation and terminology
  • Ability to analyze mathematical proofs and counterexamples
NEXT STEPS
  • Research the properties of prime numbers and their relationships with perfect squares
  • Explore mathematical proofs related to integer properties
  • Study counterexamples in mathematical logic and their implications
  • Learn about the implications of mathematical conjectures and their converses
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in exploring the properties of integers and their relationships.

johnny009
Messages
6
Reaction score
0
if n is a positive integer greater than 2 and m the smallest integer greater than or = n, that is a perfect square.
Let a = m-n.

Show that if n is prime, then a is not a perfect square.

Also, is the converse of above true, for any integer n?

any guidance, will be much appreciated?

Thanks
 
Mathematics news on Phys.org
johnny009 said:
if n is a positive integer greater than 2 and m the smallest integer greater than or = n, that is a perfect square.
Let a = m-n.

Show that if n is prime, then a is not a perfect square.

Also, is the converse of above true, for any integer n?
any guidance, will be much appreciated?Thanks

Hey johnny009! Welcome to MHB! (Smile)Guidance: let's try a couple of examples, starting with the simplest we can think of.The smallest prime $n$ is $3$, in which case $m=2^2=4$, and $a=4-3=1$, which is a perfect square!
Ah well, maybe $a=1$ is a special case...

Let's try again, the next prime $n$ is $5$, so that $m=3^2=9$, and $a=9-5=4$, which is again a perfect square!

Erm... I think it's not true, and we have 2 counter examples to prove it.Continuing with $n=6$, we get $m=3^2=9$, and $a=9-6=3$, which is not a perfect square... and $n$ is not prime.
So we have a counter example for the converse as well.
 
I like Serena said:
Hey johnny009! Welcome to MHB! (Smile)Guidance: let's try a couple of examples, starting with the simplest we can think of.The smallest prime $n$ is $3$, in which case $m=2^2=4$, and $a=4-3=1$, which is a perfect square!
Ah well, maybe $a=1$ is a special case...

Let's try again, the next prime $n$ is $5$, so that $m=3^2=9$, and $a=9-5=4$, which is again a perfect square!

Erm... I think it's not true, and we have 2 counter examples to prove it.Continuing with $n=6$, we get $m=3^2=9$, and $a=9-6=3$, which is not a perfect square... and $n$ is not prime.
So we have a counter example for the converse as well.
---------------------------------------------------------------------------------------------

Hi There,

Thanks a lot for the reply.

But, your solutions ignores the fact, that 'm' cannot be less than 'N' ...as per the QUESTION??

So, your solution...is not really addressing the Question.

CHEERS

John.
 
johnny009 said:
---------------------------------------------------------------------------------------------

Hi There,

Thanks a lot for the reply.

But, your solutions ignores the fact, that 'm' cannot be less than 'N' ........as per the QUESTION??

So, your solution...is not really addressing the Question.

CHEERS

John.

I'm assuming you mean 'n' instead of 'N', since there is no reference to 'N'?
Erm... in each of the examples $m\ge n$ as per the question... am I missing something? (Wondering)
 

Similar threads

  • · Replies 35 ·
2
Replies
35
Views
5K
  • · Replies 3 ·
Replies
3
Views
889
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K