- #1
praharmitra
- 311
- 1
Given a stationary state
[tex]
H \psi = E \psi \Rightarrow \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi = E\psi
[/tex]
Firstly is it true that
[tex]
\left<p\right> = \frac{\hbar}{i}\int\psi^* \frac{\partial \psi}{\partial x} dx= 0
[/tex] ??
If it is, how do we prove it?
[tex]
H \psi = E \psi \Rightarrow \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi = E\psi
[/tex]
Firstly is it true that
[tex]
\left<p\right> = \frac{\hbar}{i}\int\psi^* \frac{\partial \psi}{\partial x} dx= 0
[/tex] ??
If it is, how do we prove it?