Is the Golden Ratio Integral to Solving Trigonometric Integrals?

  • Context: MHB 
  • Thread starter Thread starter Shobhit
  • Start date Start date
  • Tags Tags
    Challenge Integration
Click For Summary

Discussion Overview

The discussion centers around the integral involving the inverse sine function and the Golden Ratio, specifically examining the integral $$ \int_0^{\frac{\pi}{2}}\sin^{-1}\left( \frac{\sin x}{\phi}\right) dx $$ and its evaluation. Participants explore various methods of solving this integral, including Taylor expansions and series representations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents the integral and claims it evaluates to a specific expression involving the Golden Ratio.
  • Several participants express appreciation for the initial post, indicating engagement with the problem.
  • Another participant suggests an alternative approach using the Taylor expansion of the arcsine function, detailing the steps involved in deriving a series representation for the integral.
  • A different participant proposes a similar method for a related integral involving the square of the arcsine function, providing a series representation and a specific evaluation for a case involving the square root of 2.

Areas of Agreement / Disagreement

Participants have not reached a consensus on the evaluation of the integral or the methods presented. Multiple approaches and viewpoints are discussed without resolution.

Contextual Notes

Some methods rely on series expansions and may depend on the convergence of those series. The discussion includes various assumptions about the behavior of the functions involved, which are not fully resolved.

Shobhit
Messages
21
Reaction score
0
Here is an interesting integral, which I would like to share with you:

Show that

$$
\begin{align*}
\int_0^{\frac{\pi}{2}}\sin^{-1}\left( \frac{\sin x}{\phi}\right) dx&= \frac{\pi^2}{12}-\frac{3}{4}\log^2 \phi
\end{align*}
$$

where $\phi$ is the Golden Ratio.
 
Last edited:
Physics news on Phys.org
Let $ \displaystyle I(a) = \int_{0}^{\pi/2} \arcsin (a \sin x) \ dx $ for $|a|<1$.Then $ \displaystyle I'(a) = \int_{0}^{\pi/2}\frac{\sin x}{\sqrt{1-a^{2} \sin^{2} x}} \ dx = \int_{0}^{\pi/2} \sin x \sum_{k=0}^{\infty} \binom{1/2+k-1}{k} (a \sin x)^{2k}$

$ = \displaystyle \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)}{\Gamma(k+1) \Gamma(1/2)} a^{2k} \int_{0}^{\pi/2} \sin^{2k+1} x \ dx = \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)}{\Gamma(k+1) \Gamma(1/2)} a^{2k} \frac{2^{2k}}{2k+1} \frac{(k!)^{2}}{(2k)!}$

$ \displaystyle = \sum_{k=0}^{\infty} \frac{\Gamma(2k) \Gamma(1/2) }{2^{2k-1} \Gamma(k) \Gamma(k+1) \Gamma(1/2)} a^{2k} \frac{2^{2k}}{2k+1} \frac{(k!)^{2}}{(2k)!} \frac{k}{k} = \sum_{k=0}^{\infty} \frac{(2k)!}{(k!)^{2}} a^{2k} \frac{1}{2k+1} \frac{(k!)^{2}}{(2k)!}$

$ = \displaystyle \sum_{k=0}^{\infty} \frac{a^{2k}}{2k+1} = \frac{\text{arctanh} \ a}{a}$ And $\displaystyle I(a) = \int \frac{\text{arctanh} \ a}{a} \ da = \frac{1}{2} \int \frac{\ln(1+a)-\ln(1-a)}{a} \ da = \frac{1}{2} \Big( -\text{Li}_{2}(-a) + \text{Li}_{2}(a) \Big) + C $

where the constant of integration is zeroSo $\displaystyle \int_{0}^{\pi /2} \arcsin \left( \frac{\sin x}{\varphi} \right) \ dx= \frac{1}{2} \Big( -\text{Li}_{2} \left(-\frac{1}{\varphi} \right) + \text{Li}_{2} \left( \frac{1}{\varphi} \right) \Big) = \frac{1}{2} \Big( \frac{\pi^{2}}{15} - \frac{\ln^{2} \varphi}{2} + \frac{\pi^{2}}{10} - \ln^{2} \varphi \Big)= \frac{\pi^{2}}{12} - \frac{3 \ln^{2} \varphi}{4}$
 
Last edited:
Very good RV! :)
 
Nicely done, RV! (Heidy)
 
I didn't have to differentiate inside of the integral.

I could have used the Taylor expansion of $\arcsin x$ at $x=0$.
$ \displaystyle I(a) = \int_{0}^{\pi/2} \arcsin (a \sin x) \ dx = \int_{0}^{\pi /2} \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 2^{2n} (2n+1)} \ (a \sin x)^{2n+1} \ dx$

$ \displaystyle = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 4^{n} (2n+1)} a^{2n+1} \int_{0}^{\pi /2} \sin^{2n+1} x \ dx = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 2^{2n} (2n+1)} a^{2n+1} \frac{2^{2n}}{2n+1} \frac{(n!)^{2}}{(2n)!}$

$ \displaystyle = \sum_{n=0}^{\infty} \frac{a^{2n+1}}{(2n+1)^{2}} = \chi_{2} (a) = \frac{1}{2} \Big( \text{Li}_{2}(a) - \text{Li}_{2} (-a) \Big)$
 
You can do something similar for $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} (a \sin x) \ dx $ by using the Taylor expansion of $\arcsin^{2}(x)$ at $x=0$You'll get that $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} (a \sin x) \ dx = \frac{\pi}{4} \sum_{n=1}^{\infty} \frac{(a^{2})^{n}}{n^{2}} = \frac{\pi}{4} \text{Li}_{2}(a^{2})$Then, for example, $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} \left( \frac{\sin x}{\sqrt{2}} \right) \ dx = \frac{\pi}{4} \text{Li}_{2} \left( \frac{1}{2} \right) = \frac{\pi^{3}}{48} - \frac{\pi}{8} \log^{2} 2 $
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K