Is the Golden Ratio Integral to Solving Trigonometric Integrals?

  • Context: MHB 
  • Thread starter Thread starter Shobhit
  • Start date Start date
  • Tags Tags
    Challenge Integration
Click For Summary
SUMMARY

The integral of interest is defined as $$\int_0^{\frac{\pi}{2}}\sin^{-1}\left( \frac{\sin x}{\phi}\right) dx = \frac{\pi^2}{12}-\frac{3}{4}\log^2 \phi$$, where $\phi$ represents the Golden Ratio. The discussion highlights the use of Taylor expansion for $\arcsin x$ and provides a detailed derivation of the integral using series expansion techniques. Additionally, it explores the integral of $\arcsin^2(a \sin x)$, yielding results involving the dilogarithm function, specifically $$\int_{0}^{\pi /2} \arcsin^{2} \left( \frac{\sin x}{\sqrt{2}} \right) = \frac{\pi^{3}}{48} - \frac{\pi}{8} \log^{2} 2$$.

PREREQUISITES
  • Understanding of integral calculus, specifically trigonometric integrals.
  • Familiarity with Taylor series expansions and their applications.
  • Knowledge of the properties of the Golden Ratio ($\phi$).
  • Basic comprehension of special functions, particularly the dilogarithm function ($\text{Li}_2$).
NEXT STEPS
  • Study the properties of the Golden Ratio and its applications in mathematics.
  • Learn about Taylor series expansions for various functions, focusing on $\arcsin x$.
  • Explore the dilogarithm function and its significance in integral calculus.
  • Investigate advanced techniques in evaluating trigonometric integrals, including series and special functions.
USEFUL FOR

Mathematicians, students of calculus, and researchers interested in advanced integral techniques and the applications of the Golden Ratio in mathematical analysis.

Shobhit
Messages
21
Reaction score
0
Here is an interesting integral, which I would like to share with you:

Show that

$$
\begin{align*}
\int_0^{\frac{\pi}{2}}\sin^{-1}\left( \frac{\sin x}{\phi}\right) dx&= \frac{\pi^2}{12}-\frac{3}{4}\log^2 \phi
\end{align*}
$$

where $\phi$ is the Golden Ratio.
 
Last edited:
Physics news on Phys.org
Let $ \displaystyle I(a) = \int_{0}^{\pi/2} \arcsin (a \sin x) \ dx $ for $|a|<1$.Then $ \displaystyle I'(a) = \int_{0}^{\pi/2}\frac{\sin x}{\sqrt{1-a^{2} \sin^{2} x}} \ dx = \int_{0}^{\pi/2} \sin x \sum_{k=0}^{\infty} \binom{1/2+k-1}{k} (a \sin x)^{2k}$

$ = \displaystyle \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)}{\Gamma(k+1) \Gamma(1/2)} a^{2k} \int_{0}^{\pi/2} \sin^{2k+1} x \ dx = \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)}{\Gamma(k+1) \Gamma(1/2)} a^{2k} \frac{2^{2k}}{2k+1} \frac{(k!)^{2}}{(2k)!}$

$ \displaystyle = \sum_{k=0}^{\infty} \frac{\Gamma(2k) \Gamma(1/2) }{2^{2k-1} \Gamma(k) \Gamma(k+1) \Gamma(1/2)} a^{2k} \frac{2^{2k}}{2k+1} \frac{(k!)^{2}}{(2k)!} \frac{k}{k} = \sum_{k=0}^{\infty} \frac{(2k)!}{(k!)^{2}} a^{2k} \frac{1}{2k+1} \frac{(k!)^{2}}{(2k)!}$

$ = \displaystyle \sum_{k=0}^{\infty} \frac{a^{2k}}{2k+1} = \frac{\text{arctanh} \ a}{a}$ And $\displaystyle I(a) = \int \frac{\text{arctanh} \ a}{a} \ da = \frac{1}{2} \int \frac{\ln(1+a)-\ln(1-a)}{a} \ da = \frac{1}{2} \Big( -\text{Li}_{2}(-a) + \text{Li}_{2}(a) \Big) + C $

where the constant of integration is zeroSo $\displaystyle \int_{0}^{\pi /2} \arcsin \left( \frac{\sin x}{\varphi} \right) \ dx= \frac{1}{2} \Big( -\text{Li}_{2} \left(-\frac{1}{\varphi} \right) + \text{Li}_{2} \left( \frac{1}{\varphi} \right) \Big) = \frac{1}{2} \Big( \frac{\pi^{2}}{15} - \frac{\ln^{2} \varphi}{2} + \frac{\pi^{2}}{10} - \ln^{2} \varphi \Big)= \frac{\pi^{2}}{12} - \frac{3 \ln^{2} \varphi}{4}$
 
Last edited:
Very good RV! :)
 
Nicely done, RV! (Heidy)
 
I didn't have to differentiate inside of the integral.

I could have used the Taylor expansion of $\arcsin x$ at $x=0$.
$ \displaystyle I(a) = \int_{0}^{\pi/2} \arcsin (a \sin x) \ dx = \int_{0}^{\pi /2} \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 2^{2n} (2n+1)} \ (a \sin x)^{2n+1} \ dx$

$ \displaystyle = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 4^{n} (2n+1)} a^{2n+1} \int_{0}^{\pi /2} \sin^{2n+1} x \ dx = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 2^{2n} (2n+1)} a^{2n+1} \frac{2^{2n}}{2n+1} \frac{(n!)^{2}}{(2n)!}$

$ \displaystyle = \sum_{n=0}^{\infty} \frac{a^{2n+1}}{(2n+1)^{2}} = \chi_{2} (a) = \frac{1}{2} \Big( \text{Li}_{2}(a) - \text{Li}_{2} (-a) \Big)$
 
You can do something similar for $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} (a \sin x) \ dx $ by using the Taylor expansion of $\arcsin^{2}(x)$ at $x=0$You'll get that $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} (a \sin x) \ dx = \frac{\pi}{4} \sum_{n=1}^{\infty} \frac{(a^{2})^{n}}{n^{2}} = \frac{\pi}{4} \text{Li}_{2}(a^{2})$Then, for example, $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} \left( \frac{\sin x}{\sqrt{2}} \right) \ dx = \frac{\pi}{4} \text{Li}_{2} \left( \frac{1}{2} \right) = \frac{\pi^{3}}{48} - \frac{\pi}{8} \log^{2} 2 $
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K