MHB Is the Golden Ratio Integral to Solving Trigonometric Integrals?

Click For Summary
The discussion centers on evaluating the integral of the inverse sine function involving the Golden Ratio, φ. It demonstrates that the integral from 0 to π/2 of sin⁻¹(sin x/φ) equals π²/12 - (3/4)log²(φ). Participants mention using Taylor expansions for arcsin to derive results, highlighting the effectiveness of series expansions in solving such integrals. The conversation also touches on related integrals, such as arcsin²(a sin x), and their evaluations using polylogarithmic functions. Overall, the thread illustrates the interplay between the Golden Ratio and trigonometric integrals through analytical techniques.
Shobhit
Messages
21
Reaction score
0
Here is an interesting integral, which I would like to share with you:

Show that

$$
\begin{align*}
\int_0^{\frac{\pi}{2}}\sin^{-1}\left( \frac{\sin x}{\phi}\right) dx&= \frac{\pi^2}{12}-\frac{3}{4}\log^2 \phi
\end{align*}
$$

where $\phi$ is the Golden Ratio.
 
Last edited:
Mathematics news on Phys.org
Let $ \displaystyle I(a) = \int_{0}^{\pi/2} \arcsin (a \sin x) \ dx $ for $|a|<1$.Then $ \displaystyle I'(a) = \int_{0}^{\pi/2}\frac{\sin x}{\sqrt{1-a^{2} \sin^{2} x}} \ dx = \int_{0}^{\pi/2} \sin x \sum_{k=0}^{\infty} \binom{1/2+k-1}{k} (a \sin x)^{2k}$

$ = \displaystyle \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)}{\Gamma(k+1) \Gamma(1/2)} a^{2k} \int_{0}^{\pi/2} \sin^{2k+1} x \ dx = \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)}{\Gamma(k+1) \Gamma(1/2)} a^{2k} \frac{2^{2k}}{2k+1} \frac{(k!)^{2}}{(2k)!}$

$ \displaystyle = \sum_{k=0}^{\infty} \frac{\Gamma(2k) \Gamma(1/2) }{2^{2k-1} \Gamma(k) \Gamma(k+1) \Gamma(1/2)} a^{2k} \frac{2^{2k}}{2k+1} \frac{(k!)^{2}}{(2k)!} \frac{k}{k} = \sum_{k=0}^{\infty} \frac{(2k)!}{(k!)^{2}} a^{2k} \frac{1}{2k+1} \frac{(k!)^{2}}{(2k)!}$

$ = \displaystyle \sum_{k=0}^{\infty} \frac{a^{2k}}{2k+1} = \frac{\text{arctanh} \ a}{a}$ And $\displaystyle I(a) = \int \frac{\text{arctanh} \ a}{a} \ da = \frac{1}{2} \int \frac{\ln(1+a)-\ln(1-a)}{a} \ da = \frac{1}{2} \Big( -\text{Li}_{2}(-a) + \text{Li}_{2}(a) \Big) + C $

where the constant of integration is zeroSo $\displaystyle \int_{0}^{\pi /2} \arcsin \left( \frac{\sin x}{\varphi} \right) \ dx= \frac{1}{2} \Big( -\text{Li}_{2} \left(-\frac{1}{\varphi} \right) + \text{Li}_{2} \left( \frac{1}{\varphi} \right) \Big) = \frac{1}{2} \Big( \frac{\pi^{2}}{15} - \frac{\ln^{2} \varphi}{2} + \frac{\pi^{2}}{10} - \ln^{2} \varphi \Big)= \frac{\pi^{2}}{12} - \frac{3 \ln^{2} \varphi}{4}$
 
Last edited:
Very good RV! :)
 
Nicely done, RV! (Heidy)
 
I didn't have to differentiate inside of the integral.

I could have used the Taylor expansion of $\arcsin x$ at $x=0$.
$ \displaystyle I(a) = \int_{0}^{\pi/2} \arcsin (a \sin x) \ dx = \int_{0}^{\pi /2} \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 2^{2n} (2n+1)} \ (a \sin x)^{2n+1} \ dx$

$ \displaystyle = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 4^{n} (2n+1)} a^{2n+1} \int_{0}^{\pi /2} \sin^{2n+1} x \ dx = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^{2} 2^{2n} (2n+1)} a^{2n+1} \frac{2^{2n}}{2n+1} \frac{(n!)^{2}}{(2n)!}$

$ \displaystyle = \sum_{n=0}^{\infty} \frac{a^{2n+1}}{(2n+1)^{2}} = \chi_{2} (a) = \frac{1}{2} \Big( \text{Li}_{2}(a) - \text{Li}_{2} (-a) \Big)$
 
You can do something similar for $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} (a \sin x) \ dx $ by using the Taylor expansion of $\arcsin^{2}(x)$ at $x=0$You'll get that $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} (a \sin x) \ dx = \frac{\pi}{4} \sum_{n=1}^{\infty} \frac{(a^{2})^{n}}{n^{2}} = \frac{\pi}{4} \text{Li}_{2}(a^{2})$Then, for example, $ \displaystyle \int_{0}^{\pi /2} \arcsin^{2} \left( \frac{\sin x}{\sqrt{2}} \right) \ dx = \frac{\pi}{4} \text{Li}_{2} \left( \frac{1}{2} \right) = \frac{\pi^{3}}{48} - \frac{\pi}{8} \log^{2} 2 $
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K