MHB Is the Inequality $(a+b+c)^2+(x+y+z)^2≥1$ Always True?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The inequality $(a+b+c)^2 + (x+y+z)^2 \ge 1$ is proven to be true under the conditions that $x, y, z > 0$ and $x^2 + a^2 = y^2 + b^2 = z^2 + c^2 = 1$. A geometric approach is employed, where points $P$, $Q$, and $R$ lie on the upper half of the unit circle, forming an obtuse triangle. The circumcenter $C$, centroid $G$, and orthocenter $H$ are analyzed, revealing that the distance from $C$ to $H$ exceeds 1. Consequently, the inequality is strengthened to $(a+b+c)^2 + (x+y+z)^2 > 1$, as equality cannot occur when $x, y, z$ are strictly positive.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z>0$ and $a,\,b,\,c$ be real numbers such that $x^2+a^2=y^2+b^2=z^2+c^2=1$.

Prove that $(a+b+c)^2+(x+y+z)^2\ge 1$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z>0$ and $a,\,b,\,c$ be real numbers such that $x^2+a^2=y^2+b^2=z^2+c^2=1$.

Prove that $(a+b+c)^2+(x+y+z)^2\ge 1$.
[sp]Here is a geometric approach to the problem.
[TIKZ]\clip (-6,-1) rectangle (12,12) ;
\draw [thin] (-6,0) -- (6,0) ;
\draw [thin] (0,-1) -- (0,10) ;
\coordinate [label=above left:{$P$}] (P) at (-4,3) ;
\coordinate [label=above right:{$Q$}] (Q) at (1.92,4.62) ;
\coordinate [label=right:{$R$}] (R) at (4.42,2.35) ;
\draw [thin,gray] (P) -- (3.17,3.5) ;
\draw [thin,gray] (Q) -- (0.21,2.675) ;
\draw [thin,gray] (R) -- (-1.04,3.81) ;
\coordinate [label=below:{$C$}] (C) at (0,0) ;
\coordinate [label=right:{$G$}] (G) at (0.78,3.33) ;
\coordinate [label=right:{$H$}] (H) at (2.34,10) ;
\coordinate [label=below:{$N$}] (N) at (1.75,2.55) ;
\draw [thin,gray] (H) -- (N) ;
\draw [red] (C) --(G) -- (H) ;
\foreach \point in {C,G,H}
\fill (\point) circle(2pt) ;
\draw (0,0) circle (5cm) ;
\draw (P) -- (Q) -- (R) -- cycle ;
[/TIKZ]​
Let $P = (a,x)$, $Q = (b,y)$ and $R = (c,z)$. The given conditions imply that $P,Q,R$ all lie on the upper half of the unit circle. Relabelling the points if necessary, we may assume that $Q$ lies on the arc between $P$ and $R$. Notice that the angle $PQR$ is obtuse.

The origin $C$ is the circumcentre of the triangle $PQR$. Let $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$ be the centroid of the triangle, and let $H$ be the orthocentre (where the three perpendiculars from the vertices to the opposite sides meet). In particular, let $N$ be the point where the perpendicular from $Q$ meets the side $PR$. The fact that the angle at $Q$ is obtuse means that $N$ lies inside the unit circle on the segment $PR$, and $H$ lies outside the circle, on the opposite side of $Q$ from $N$. Therefore the distance $|CH|$ is greater than $1$.

The theory of the Euler line tells us that the points $C,G,H$ are collinear and that $|GH| = 2|CG|$, so that $|CH| = 3|CG|$. Since $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$, it follows that $H = \bigl((a+b+c),(x+y+z)\bigr)$. But then the fact that $|CH| >1$ tells us that $(a+b+c)^2 + (x+y+z)^2 > 1.$[/sp]
 
Opalg said:
[sp]Here is a geometric approach to the problem.
[TIKZ]\clip (-6,-1) rectangle (12,12) ;
\draw [thin] (-6,0) -- (6,0) ;
\draw [thin] (0,-1) -- (0,10) ;
\coordinate [label=above left:{$P$}] (P) at (-4,3) ;
\coordinate [label=above right:{$Q$}] (Q) at (1.92,4.62) ;
\coordinate [label=right:{$R$}] (R) at (4.42,2.35) ;
\draw [thin,gray] (P) -- (3.17,3.5) ;
\draw [thin,gray] (Q) -- (0.21,2.675) ;
\draw [thin,gray] (R) -- (-1.04,3.81) ;
\coordinate [label=below:{$C$}] (C) at (0,0) ;
\coordinate [label=right:{$G$}] (G) at (0.78,3.33) ;
\coordinate [label=right:{$H$}] (H) at (2.34,10) ;
\coordinate [label=below:{$N$}] (N) at (1.75,2.55) ;
\draw [thin,gray] (H) -- (N) ;
\draw [red] (C) --(G) -- (H) ;
\foreach \point in {C,G,H}
\fill (\point) circle(2pt) ;
\draw (0,0) circle (5cm) ;
\draw (P) -- (Q) -- (R) -- cycle ;
[/TIKZ]​
Let $P = (a,x)$, $Q = (b,y)$ and $R = (c,z)$. The given conditions imply that $P,Q,R$ all lie on the upper half of the unit circle. Relabelling the points if necessary, we may assume that $Q$ lies on the arc between $P$ and $R$. Notice that the angle $PQR$ is obtuse.

The origin $C$ is the circumcentre of the triangle $PQR$. Let $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$ be the centroid of the triangle, and let $H$ be the orthocentre (where the three perpendiculars from the vertices to the opposite sides meet). In particular, let $N$ be the point where the perpendicular from $Q$ meets the side $PR$. The fact that the angle at $Q$ is obtuse means that $N$ lies inside the unit circle on the segment $PR$, and $H$ lies outside the circle, on the opposite side of $Q$ from $N$. Therefore the distance $|CH|$ is greater than $1$.

The theory of the Euler line tells us that the points $C,G,H$ are collinear and that $|GH| = 2|CG|$, so that $|CH| = 3|CG|$. Since $G = \bigl(\frac13(a+b+c),\frac13(x+y+z)\bigr)$, it follows that $H = \bigl((a+b+c),(x+y+z)\bigr)$. But then the fact that $|CH| >1$ tells us that $(a+b+c)^2 + (x+y+z)^2 > 1.$[/sp]
but how can it be: $(a+b+c)^2+(x+y+z)^2=1\,\, ?$
for the question :$(a+b+c)^2+(x+y+z)^2\geq1 $
when will the equality happen ?
 
Last edited:
Since $x^2+a^2=1,$ therefore, $0<x\le1 $ and $|a|<1$ by the given conditions($x,y,z,a,b,c\in\mathbb{R}$). Similarly, $0<y,z\le1$ and $|b|,|c|<1$. Now, $$(x+y+z)^2+(a+b+c)^2=3+2(xy+yz+zx)+2(ab+bc+ca)\ge3+2(ab+bc+ca)$$ because of the positivity of $x,y,z$. Now, atleast one of $ab,bc$ or $ca$ must be positive and the minimum value of the sum of other two approaches $-2$. Note that when the negative products approach $-2$, the positive product approaches $1$.Therefore, $(x+y+z)^2+(a+b+c)^2\gt3+2(1)-2(2)=1$.
 
Last edited by a moderator:
Albert said:
but how can it be: $(a+b+c)^2+(x+y+z)^2=1\,\, ?$
for the question :$(a+b+c)^2+(x+y+z)^2\geq1 $
when will the equality happen ?
[sp]Equality can only happen in the limiting case where (in the diagram in my previous comment) $P$ and $Q$ are on the $x$-axis at the points $\pm1$. But the question stipulates that $x$, $y$ and $z$ are strictly positive. That implies that the limiting case cannot occur, and so the conclusion can be strengthened to $(a+b+c)^2+(x+y+z)^2 > 1 $.[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top