Is the integral over the first octant of a three-variable function continuous?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The integral of the function \( g(x,y,z) = \frac{1}{(x^2+y^2+z^2+a^2)^{3/2}} \) over the first octant diverges to infinity. The improper integral is defined by taking the limit as the radius of a ball \( B_c \) approaches infinity. Converting to spherical coordinates reveals that the integral evaluates to a limit involving logarithmic terms, which diverges. Thus, the conclusion is that the integral does not converge and diverges to infinity. The discussion emphasizes the behavior of the integral in the context of improper integrals in three dimensions.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem!

-----

Background information: If a function $g$ of three variables is continuous and nonnegative on an unbounded region $S$ in $\Bbb{R}^3$, then the improper integral of $g$ over $S$ is defined by
\[\iiint\limits_S g\,dV = \lim_{c\to\infty} \iiint\limits_{S\cap B_c} g\,dV,\]
where $B_c$ is a ball of radius $c$ centered at any point $\mathbf{a}$ in $S$, provided that the limit exists.

Problem: Compute $\displaystyle\iiint\limits_S \frac{1}{(x^2+y^2+z^2+a^2)^{3/2}}\,dV$ where $S$ is the first octant ($x,y,z\geq 0$) and $a$ is a nonzero constant.

-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can find my solution below.

[sp]Take $B_c$ to be a ball of radius $c$ centered at the origin. Then $S\cap B_c$ is the section of the sphere in the first octant. Converting the integral over $S\cap B_c$ into spherical coordinates, we see that
\[\begin{aligned}\int_0^{\infty}\int_0^{\infty}\int_0^{\infty}\frac{1}{(x^2+y^2+z^2+a^2)^{3/2}}\,dx\,dy\,dz &= \lim_{c\to\infty}\int_0^{\pi/2}\int_0^{\pi/2}\int_0^c \frac{\rho^2\sin\phi}{(\rho^2+a^2)^{3/2}}\,d\rho\,d\phi,d\theta\\ &= \left(\int_0^{\pi/2}\,d\theta\right)\left(\int_0^{\pi/2}\sin\phi\,d\phi\right)\left(\lim_{c\to\infty}\int_0^c \frac{\rho^2}{(\rho^2+a^2)^{3/2}}\,d\rho\right)\\ &= \frac{\pi}{2}\lim_{c\to\infty}\int_0^c \frac{\rho^2}{(\rho^2+a^2)^{3/2}}\,d\rho\end{aligned}\]

To evaluate the last integral, make the trig substitution $\rho = a\tan\theta\implies d\rho = a\sec^2\theta\,d\theta$. Therefore,
\[\begin{aligned}\int\frac{\rho^2}{(\rho^2+a^2)^{3/2}}\,d\rho &= \int\frac{a^3\tan^2\theta\sec^2\theta}{a^3\sec^3\theta}\,d\theta \\ &= \int\frac{\tan^2\theta}{\sec\theta}\,d\theta\\ &= \int \sec\theta+\cos\theta\,d\theta \\ &= \ln|\sec\theta+\tan\theta|+\sin\theta+C\\ &= \ln\left|\sqrt{\rho^2+a^2}+\rho\right|-\ln|a|+\frac{\rho}{\sqrt{\rho^2+a^2}}+C\\ &= \ln\left|\sqrt{\rho^2+a^2}+\rho\right|+\frac{\rho}{\sqrt{\rho^2+a^2}}+C\end{aligned}\]
Thus,

\[\begin{aligned} \frac{\pi}{2}\lim_{c\to\infty}\int_0^c\frac{\rho^2}{(\rho^2+a^2)^{3/2}}\,d\rho &= \frac{\pi}{2}\lim_{c\to\infty}\left.\left[\ln\left|\sqrt{\rho^2+a^2}+\rho\right|+\frac{\rho}{\sqrt{\rho^2+a^2}}\right]\right|_0^c\\ &= \frac{\pi}{2}\left[\lim_{c\to\infty}\ln\left|\sqrt{c^2+a^2}+c\right|+\frac{c}{\sqrt{c^2+a^2}} - \ln|a|\right] \end{aligned}\]

However, $\displaystyle\lim_{c\to\infty}\ln\left|\sqrt{c^2+a^2}+c\right|$ diverges to $\infty$. Therefore, we conclude that $\displaystyle\iiint\limits_S\frac{1}{(x^2+y^2+z^2+a^2)^{3/2}}\,dV = \lim_{c\to \infty}\iiint\limits_{S\cap B_c}\frac{1}{(x^2+y^2+z^2+a^2)^{3/2}}\,dV$ diverges to $\infty$.$\hspace{.25in}\clubsuit$[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K