A Is the kinetic mixing gauge-invariant for non-Abelian gauge fields?

Ramtin123
Messages
22
Reaction score
0
Consider two non-Abelian gauge fields ##A_\mu^a## and ##A_\mu^{'a}## belonging to the same symmetry group. An example could be the SM electroweak isospin fields and another exotic SU(2) hidden sector where ##a=1, \dots 3##.
Is the kinetic mixing of the following form gauge-invariant?
$$ F_{\mu\nu}^a F^{'a\mu\nu} $$
where ## F_{\mu\nu}^a## and ## F_{\mu\nu}^{'a}## denote the corresponding field strength tensors.
What is the difference between this case and a usual non-Abelian kinetic term ## F_{\mu\nu}^a F^{a\mu\nu}##?
 
Physics news on Phys.org
You need to have a different "gauge index" on the F' tensor than a. I think... But gauge fields always transform under the fundemantal representation, so I think FF' should be gauge invariant. Here is a paper on it https://arxiv.org/abs/1604.00044

We do have kinetic mixing if we have more than one abelian gauge symmetry.
 
Last edited:
malawi_glenn said:
You need to have a different "gauge index" on the F' tensor than a. I think... But gauge fields always transform under the fundemantal representation, so I think FF' should be gauge invariant. Here is a paper on it https://arxiv.org/abs/1604.00044

We do have kinetic mixing if we have more than one abelian gauge symmetry.
That paper discusses kinetic mixing of an Abelian U(1) gauge field with the electroweak isospin fields as shown in equations (1.1) and (1.3). The Abelian field strength tensor ##X_{\mu\nu}## is gauge invariant. This is not true for non-Abelian field strength tensor ##F^a_{\mu\nu}##. But the bilinear ## F_{\mu\nu}^a F^{a\mu\nu}## is gauge-invariant.
In this paper Arxiv 2104.01871 [hep-ph] , in the introduction, it is claimed that non-Abelian kinetic mixing is not gauge invariant. But the author does not explain why.
  • The gauge indices are contracted ##tr (F_{\mu\nu}^a T^a F^{ 'b\mu\nu} T^b) = \frac{1}{2} F_{\mu\nu}^a F^{ 'a\mu\nu}##
  • I think you mean "gauge fields always transform under the adjoint representation".
 
Ramtin123 said:
gauge fields always transform under the adjoint representation".
Yes I did.

I did some calculations, the coupling constant ##g## is included in the transformation matrices, ##U(x) = \text{exp}(- \text{i} g\theta(x)^a T^a)##.

## \text{Tr} ( F^{\mu \nu} B_ {\mu \nu}) \to \text{Tr} (U F^{\mu \nu} U^\dagger V B_ {\mu \nu} V^\dagger) \neq \text{Tr} ( F^{\mu \nu} B_ {\mu \nu})## because ##U^\dagger V \neq I ## and ##U^\dagger V \neq I ## because of different gauge-couplings.
 
Last edited:
Jacobson’s work (1995) [1] demonstrated that Einstein’s equations can be derived from thermodynamic principles, suggesting gravity might emerge from the thermodynamic behavior of spacetime, tied to the entropy of horizons. Other researchers, such as Bekenstein [2] and Verlinde [3], have explored similar ideas, linking gravity to entropy and holographic principles. I’m interested in discussing how these thermodynamic approaches might apply to quantum gravity, particularly at the Planck...

Similar threads

Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
11
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
345
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 13 ·
Replies
13
Views
4K