A Understanding that QCD is not CP invariant

  • Thread starter Thread starter JD_PM
  • Start date Start date
  • Tags Tags
    Invariant Qcd
Click For Summary
The discussion centers on the CP invariance of the Quantum Chromodynamics (QCD) Lagrangian, as outlined in Bigi and Sanda's work. While the QCD Lagrangian appears CP invariant under certain transformations, it is argued that the inclusion of a specific gauge-invariant operator, which involves a totally antisymmetric tensor, breaks this invariance. The strong CP problem is highlighted, questioning why this additional term is not observed despite no symmetry forbidding it. The conversation also touches on the implications of potential unobserved CP-violating terms and the fine-tuning issues associated with them. Ultimately, the discussion underscores the complexity of establishing CP invariance in QCD and the ongoing challenges in understanding its implications.
  • #31
JD_PM said:
Where the first term drops because ##\varepsilon^{\mu\nu\rho\sigma}## is antisymmetric under ##\mu \leftrightarrow \nu## while ##\partial_{\mu} A_{\nu}## is symmetric (not completely sure if this is OK).
Mmm... How would you argue that ##\partial_{\mu}A_{\nu}## is symmetric?? And more important, if the first term vanishes, how in the world the second does not vanish?

JD_PM said:
Next I thought of product rule + divergence theorem

\begin{equation*}
\underbrace{\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right)}_{=0?} =\underbrace{\partial_\mu(\varepsilon^{\mu\nu\rho\sigma})A_\nu^i F_{\rho\sigma}^i}_{=0} + \varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i + \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{equation*}
You shouldn't use the divergence theorem here. First of all, because we are told that the boundary terms don't vanish. And furthermore, we want to express the whole expression as a total divergence, if you use the DT to get rid of such terms...
 
  • Like
Likes JD_PM
Physics news on Phys.org
  • #32
Gaussian97 said:
And more important, if the first term vanishes, how in the world the second does not vanish?
Absolutely right.

Hence I have

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\nu} A_{\mu}^i - \partial_{\mu} A_{\nu}^i)F_{\rho\sigma}^i \\
&= -2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= -\frac 1 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) + \frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm how to deal with the ##\frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i## term though? I thought of Bianchi identity for ##F_{\mu\nu}## but I do not think it is going to lead us to the desired result.
 
  • #33
JD_PM said:
\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&= ?\\
&= \partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

I advanced just a bit: ##A^4## term is symmetric so

\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma})\\
&= ?\\
&= \partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

:biggrin:
 
  • #34
JD_PM said:
Absolutely right.

Hence I have

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\nu} A_{\mu}^i - \partial_{\mu} A_{\nu}^i)F_{\rho\sigma}^i \\
&= -2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= -\frac 1 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) + \frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm how to deal with the ##\frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i## term though? I thought of Bianchi identity for ##F_{\mu\nu}## but I do not think it is going to lead us to the desired result.
Not sure how you convert the 2 to a 1/2, but the idea is OK. Using the definition of ##F## and symmetry is not difficult to show that
$$\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i=0$$

JD_PM said:
I advanced just a bit: ##A^4## term is symmetric so
Yes... But I think is not completely trivial to show how the symmetry of ##A^4## cancels this term.
 
  • #35
The authors seem to be using the definition ##F_i^{\mu \nu} := \partial^{\mu} A^{\nu}_i - \partial^{\nu} A^{\mu}_i## so let us use it as well from here on.

Gaussian97 said:
Not sure how you convert the 2 to a 1/2

Oops indeed, we have

\begin{align*}
&\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) =\underbrace{\partial_\mu(\varepsilon^{\mu\nu\rho\sigma})A_\nu^i F_{\rho\sigma}^i}_{=0} + \varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i + \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i \\
&\Rightarrow 2\varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i = 2\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) - 2\varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Then

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\mu} A_{\nu}^i - \partial_{\nu} A_{\mu}^i)F_{\rho\sigma}^i \\
&= 2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) - 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm so there is a 2 factor mismatch between your result and mine.

Gaussian97 said:
Using the definition of ##F## and symmetry is not difficult to show that
$$\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i=0$$

\begin{align*}
\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i &= \varepsilon^{\mu\nu\rho\sigma}\partial_\mu(\partial_\rho A_\sigma^i - \partial_\sigma A_\rho^i)\\
&= \varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\rho A_\sigma^i - \varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\sigma A_\rho^i \\
&= 0
\end{align*}

Where we noticed that the object ##\partial_\mu \partial_\rho A_\sigma^i## is symmetric under ##\mu \leftrightarrow \rho## and is contracted with the object ##\varepsilon^{\mu\nu\rho\sigma}##, which is antisymmetric under ##\mu \leftrightarrow \rho##. Hence ##\varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\rho A_\sigma^i = 0##. Analogously, ##\varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\sigma A_\rho^i=0##
 
  • #36
So let us now draw our attention back to the main prove. We first see that ##\varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + \varepsilon_{\mu\nu\rho\sigma} g_s f_{ijk} F_i^{\rho \sigma} A_j^{\mu} A_k^{\nu} = 2 \varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma}##, given that ##\varepsilon_{\mu\nu\rho\sigma} = \varepsilon_{\rho\sigma\mu\nu}##.

All is left is to work out the term (let me drop the 2 factor for the explicit computation) ##\varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma}##

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} &= \varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}(\partial^\mu A^\nu_i - \partial^\nu A^\mu_i)A_l^{\rho} A_m^{\sigma} \\
&= 2 \varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm} \partial^\mu A^\nu_i A_l^{\rho} A_m^{\sigma}\\
&= \frac 2 3 \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm} A^\nu_i A_l^{\rho} A_m^{\sigma})\\
&= \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} A^\nu_i A_l^{\rho} A_m^{\sigma}) -\frac 1 3 \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} A^\nu_i A_l^{\rho} A_m^{\sigma})
\end{align*}

This smells really good! 😋 (at least to me!)

We finally have

\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma})\\
&= \varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + 2g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma})\\
&= 2\partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

Mmm so my result has a 2 extra factor...

This issue is simply solved by redefining ##G \cdot \tilde G := \frac 1 2 \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}## but I might have missed some detail in the computation and that is why I get the 2 extra factor

What do you think? :biggrin:
 
  • #37
Ok, I think the factor 2 is due to the definition of ##\tilde{G}##, but anyway I don't think it is really important.
Regarding your proof, there are some technical details missing, but I think that you have the general idea.
 
  • Like
  • Love
Likes arivero and JD_PM
  • #38
Gaussian97 said:
Ok, I think the factor 2 is due to the definition of ##\tilde{G}##

Oh indeed! The Hodge dual tensor is actually defined as ##\tilde{G}_{i\mu \nu} := \frac 1 2 \varepsilon_{\mu \nu \rho\sigma} G_i^{\rho \sigma}## (I made the analogy from QED from here) so the 2 factor is taken care by the ##\frac 1 2## included in the dual tensor, so the guess was right! :smile:

Vamos! (this is a mother-tongue word I love to use when celebrating something; you could translate it as "let's go!" :) ).

I have recently started to learn more about gauge theories in the context of particle physics and it is a truly fascinating subject. I am currently reading these fantastic notes written by Australian physicist Rod Crewther.

Another discussion in which I have learned A LOT. Thank you very much @Gaussian97, I hope to come across you very very soon.
 
  • Like
Likes vanhees71 and arivero

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
24
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
30
Views
2K
Replies
1
Views
3K