Understanding that QCD is not CP invariant

  • Context: Graduate 
  • Thread starter Thread starter JD_PM
  • Start date Start date
  • Tags Tags
    Invariant Qcd
Click For Summary
SUMMARY

The discussion centers on the invariance of the Quantum Chromodynamics (QCD) Lagrangian under CP transformations, as outlined in the book "CP Violation" by Bigi and Sanda. The QCD Lagrangian is expressed as QCD = 𝜓f [i 𝛾μDμ - mf] 𝜓f - (1/4) Gi μνGiμν. While the Lagrangian appears CP invariant, the introduction of a gauge-invariant operator (1/2) Gi μνεμνρσGρσi indicates that QCD is not CP invariant due to the properties of the Levi-Civita symbol. The discussion highlights the strong CP problem, questioning why this term is unobservably small or zero.

PREREQUISITES
  • Understanding of Quantum Chromodynamics (QCD)
  • Familiarity with CP violation concepts
  • Knowledge of gauge invariance and renormalization
  • Proficiency in tensor calculus and Lagrangian mechanics
NEXT STEPS
  • Research the strong CP problem and its implications in particle physics
  • Study the role of the Levi-Civita symbol in gauge theories
  • Explore the QCD axion and its proposed solutions to the strong CP problem
  • Investigate the properties of pseudo-tensors in field theory
USEFUL FOR

Particle physicists, theoretical physicists, and researchers interested in CP violation and its implications in QCD and beyond.

  • #31
JD_PM said:
Where the first term drops because ##\varepsilon^{\mu\nu\rho\sigma}## is antisymmetric under ##\mu \leftrightarrow \nu## while ##\partial_{\mu} A_{\nu}## is symmetric (not completely sure if this is OK).
Mmm... How would you argue that ##\partial_{\mu}A_{\nu}## is symmetric?? And more important, if the first term vanishes, how in the world the second does not vanish?

JD_PM said:
Next I thought of product rule + divergence theorem

\begin{equation*}
\underbrace{\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right)}_{=0?} =\underbrace{\partial_\mu(\varepsilon^{\mu\nu\rho\sigma})A_\nu^i F_{\rho\sigma}^i}_{=0} + \varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i + \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{equation*}
You shouldn't use the divergence theorem here. First of all, because we are told that the boundary terms don't vanish. And furthermore, we want to express the whole expression as a total divergence, if you use the DT to get rid of such terms...
 
  • Like
Likes   Reactions: JD_PM
Physics news on Phys.org
  • #32
Gaussian97 said:
And more important, if the first term vanishes, how in the world the second does not vanish?
Absolutely right.

Hence I have

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\nu} A_{\mu}^i - \partial_{\mu} A_{\nu}^i)F_{\rho\sigma}^i \\
&= -2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= -\frac 1 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) + \frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm how to deal with the ##\frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i## term though? I thought of Bianchi identity for ##F_{\mu\nu}## but I do not think it is going to lead us to the desired result.
 
  • #33
JD_PM said:
\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&= ?\\
&= \partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

I advanced just a bit: ##A^4## term is symmetric so

\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma})\\
&= ?\\
&= \partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

:biggrin:
 
  • #34
JD_PM said:
Absolutely right.

Hence I have

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\nu} A_{\mu}^i - \partial_{\mu} A_{\nu}^i)F_{\rho\sigma}^i \\
&= -2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= -\frac 1 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) + \frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm how to deal with the ##\frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i## term though? I thought of Bianchi identity for ##F_{\mu\nu}## but I do not think it is going to lead us to the desired result.
Not sure how you convert the 2 to a 1/2, but the idea is OK. Using the definition of ##F## and symmetry is not difficult to show that
$$\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i=0$$

JD_PM said:
I advanced just a bit: ##A^4## term is symmetric so
Yes... But I think is not completely trivial to show how the symmetry of ##A^4## cancels this term.
 
  • #35
The authors seem to be using the definition ##F_i^{\mu \nu} := \partial^{\mu} A^{\nu}_i - \partial^{\nu} A^{\mu}_i## so let us use it as well from here on.

Gaussian97 said:
Not sure how you convert the 2 to a 1/2

Oops indeed, we have

\begin{align*}
&\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) =\underbrace{\partial_\mu(\varepsilon^{\mu\nu\rho\sigma})A_\nu^i F_{\rho\sigma}^i}_{=0} + \varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i + \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i \\
&\Rightarrow 2\varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i = 2\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) - 2\varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Then

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\mu} A_{\nu}^i - \partial_{\nu} A_{\mu}^i)F_{\rho\sigma}^i \\
&= 2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) - 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm so there is a 2 factor mismatch between your result and mine.

Gaussian97 said:
Using the definition of ##F## and symmetry is not difficult to show that
$$\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i=0$$

\begin{align*}
\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i &= \varepsilon^{\mu\nu\rho\sigma}\partial_\mu(\partial_\rho A_\sigma^i - \partial_\sigma A_\rho^i)\\
&= \varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\rho A_\sigma^i - \varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\sigma A_\rho^i \\
&= 0
\end{align*}

Where we noticed that the object ##\partial_\mu \partial_\rho A_\sigma^i## is symmetric under ##\mu \leftrightarrow \rho## and is contracted with the object ##\varepsilon^{\mu\nu\rho\sigma}##, which is antisymmetric under ##\mu \leftrightarrow \rho##. Hence ##\varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\rho A_\sigma^i = 0##. Analogously, ##\varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\sigma A_\rho^i=0##
 
  • #36
So let us now draw our attention back to the main prove. We first see that ##\varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + \varepsilon_{\mu\nu\rho\sigma} g_s f_{ijk} F_i^{\rho \sigma} A_j^{\mu} A_k^{\nu} = 2 \varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma}##, given that ##\varepsilon_{\mu\nu\rho\sigma} = \varepsilon_{\rho\sigma\mu\nu}##.

All is left is to work out the term (let me drop the 2 factor for the explicit computation) ##\varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma}##

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} &= \varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}(\partial^\mu A^\nu_i - \partial^\nu A^\mu_i)A_l^{\rho} A_m^{\sigma} \\
&= 2 \varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm} \partial^\mu A^\nu_i A_l^{\rho} A_m^{\sigma}\\
&= \frac 2 3 \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm} A^\nu_i A_l^{\rho} A_m^{\sigma})\\
&= \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} A^\nu_i A_l^{\rho} A_m^{\sigma}) -\frac 1 3 \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} A^\nu_i A_l^{\rho} A_m^{\sigma})
\end{align*}

This smells really good! 😋 (at least to me!)

We finally have

\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma})\\
&= \varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + 2g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma})\\
&= 2\partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

Mmm so my result has a 2 extra factor...

This issue is simply solved by redefining ##G \cdot \tilde G := \frac 1 2 \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}## but I might have missed some detail in the computation and that is why I get the 2 extra factor

What do you think? :biggrin:
 
  • #37
Ok, I think the factor 2 is due to the definition of ##\tilde{G}##, but anyway I don't think it is really important.
Regarding your proof, there are some technical details missing, but I think that you have the general idea.
 
  • Like
  • Love
Likes   Reactions: arivero and JD_PM
  • #38
Gaussian97 said:
Ok, I think the factor 2 is due to the definition of ##\tilde{G}##

Oh indeed! The Hodge dual tensor is actually defined as ##\tilde{G}_{i\mu \nu} := \frac 1 2 \varepsilon_{\mu \nu \rho\sigma} G_i^{\rho \sigma}## (I made the analogy from QED from here) so the 2 factor is taken care by the ##\frac 1 2## included in the dual tensor, so the guess was right! :smile:

Vamos! (this is a mother-tongue word I love to use when celebrating something; you could translate it as "let's go!" :) ).

I have recently started to learn more about gauge theories in the context of particle physics and it is a truly fascinating subject. I am currently reading these fantastic notes written by Australian physicist Rod Crewther.

Another discussion in which I have learned A LOT. Thank you very much @Gaussian97, I hope to come across you very very soon.
 
  • Like
Likes   Reactions: vanhees71 and arivero

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K