Understanding that QCD is not CP invariant

  • Context: Graduate 
  • Thread starter Thread starter JD_PM
  • Start date Start date
  • Tags Tags
    Invariant Qcd
Click For Summary

Discussion Overview

The discussion revolves around the CP invariance of Quantum Chromodynamics (QCD), specifically addressing claims made in the book "CP Violation" by Bigi and Sanda. Participants explore the implications of adding a gauge-invariant operator to the QCD Lagrangian and the conditions under which CP violation may arise, delving into theoretical aspects and mathematical formulations.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant cites the QCD Lagrangian and argues that it appears CP invariant based on their transformations of fields and gauge potentials.
  • Another participant notes that the Levi-Civita symbol represents a pseudo-tensor, which may affect how CP transformations apply.
  • A participant questions how the addition of a pseudo-scalar term influences the overall CP invariance of QCD, suggesting that the term's absence from the Lagrangian should not affect its invariance.
  • Discussion includes the strong CP problem, highlighting that there is no symmetry forbidding the pseudo-scalar term, leading to questions about its smallness or absence.
  • Participants discuss the implications of the term's coupling constant and the potential requirement of new symmetries to explain its behavior.
  • One participant reflects on their misunderstanding of charge-conjugation invariance in a specific term of the Lagrangian and seeks clarification.
  • Another participant compares the treatment of terms in the Lagrangian to those in electrodynamics, questioning the validity of certain relations in the context of QCD.

Areas of Agreement / Disagreement

Participants express differing views on the implications of the pseudo-scalar term for CP invariance, with no consensus reached on whether the presence of such a term affects the overall invariance of QCD. The discussion remains unresolved regarding the exact nature of CP violation in QCD and the interpretation of specific mathematical expressions.

Contextual Notes

Participants acknowledge the complexity of the topic, including the need for careful consideration of tensor and pseudo-tensor properties under transformations, as well as the implications of gauge invariance and renormalizability in the context of QCD. The discussion also touches on the strong CP problem and the potential for unobserved CP-violating terms.

  • #31
JD_PM said:
Where the first term drops because ##\varepsilon^{\mu\nu\rho\sigma}## is antisymmetric under ##\mu \leftrightarrow \nu## while ##\partial_{\mu} A_{\nu}## is symmetric (not completely sure if this is OK).
Mmm... How would you argue that ##\partial_{\mu}A_{\nu}## is symmetric?? And more important, if the first term vanishes, how in the world the second does not vanish?

JD_PM said:
Next I thought of product rule + divergence theorem

\begin{equation*}
\underbrace{\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right)}_{=0?} =\underbrace{\partial_\mu(\varepsilon^{\mu\nu\rho\sigma})A_\nu^i F_{\rho\sigma}^i}_{=0} + \varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i + \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{equation*}
You shouldn't use the divergence theorem here. First of all, because we are told that the boundary terms don't vanish. And furthermore, we want to express the whole expression as a total divergence, if you use the DT to get rid of such terms...
 
  • Like
Likes   Reactions: JD_PM
Physics news on Phys.org
  • #32
Gaussian97 said:
And more important, if the first term vanishes, how in the world the second does not vanish?
Absolutely right.

Hence I have

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\nu} A_{\mu}^i - \partial_{\mu} A_{\nu}^i)F_{\rho\sigma}^i \\
&= -2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= -\frac 1 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) + \frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm how to deal with the ##\frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i## term though? I thought of Bianchi identity for ##F_{\mu\nu}## but I do not think it is going to lead us to the desired result.
 
  • #33
JD_PM said:
\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&= ?\\
&= \partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

I advanced just a bit: ##A^4## term is symmetric so

\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma})\\
&= ?\\
&= \partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

:biggrin:
 
  • #34
JD_PM said:
Absolutely right.

Hence I have

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\nu} A_{\mu}^i - \partial_{\mu} A_{\nu}^i)F_{\rho\sigma}^i \\
&= -2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= -\frac 1 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) + \frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm how to deal with the ##\frac 1 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i## term though? I thought of Bianchi identity for ##F_{\mu\nu}## but I do not think it is going to lead us to the desired result.
Not sure how you convert the 2 to a 1/2, but the idea is OK. Using the definition of ##F## and symmetry is not difficult to show that
$$\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i=0$$

JD_PM said:
I advanced just a bit: ##A^4## term is symmetric so
Yes... But I think is not completely trivial to show how the symmetry of ##A^4## cancels this term.
 
  • #35
The authors seem to be using the definition ##F_i^{\mu \nu} := \partial^{\mu} A^{\nu}_i - \partial^{\nu} A^{\mu}_i## so let us use it as well from here on.

Gaussian97 said:
Not sure how you convert the 2 to a 1/2

Oops indeed, we have

\begin{align*}
&\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) =\underbrace{\partial_\mu(\varepsilon^{\mu\nu\rho\sigma})A_\nu^i F_{\rho\sigma}^i}_{=0} + \varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i + \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i \\
&\Rightarrow 2\varepsilon^{\mu\nu\rho\sigma}\partial_\mu A_\nu^i F_{\rho\sigma}^i = 2\partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) - 2\varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Then

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}F_i^{\mu\nu}F^{\rho\sigma}_i &= \varepsilon^{\mu\nu\rho\sigma}F^i_{\mu\nu}F_{\rho\sigma}^i \\
&= \varepsilon^{\mu\nu\rho\sigma}(\partial_{\mu} A_{\nu}^i - \partial_{\nu} A_{\mu}^i)F_{\rho\sigma}^i \\
&= 2\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu} A_{\nu}^i F_{\rho\sigma}^i \\
&= 2 \partial_\mu\left(\varepsilon^{\mu\nu\rho\sigma}A_\nu^i F_{\rho\sigma}^i\right) - 2 \varepsilon^{\mu\nu\rho\sigma}A_\nu^i \partial_\mu F_{\rho\sigma}^i
\end{align*}

Mmm so there is a 2 factor mismatch between your result and mine.

Gaussian97 said:
Using the definition of ##F## and symmetry is not difficult to show that
$$\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i=0$$

\begin{align*}
\varepsilon^{\mu\nu\rho\sigma}\partial_\mu F_{\rho\sigma}^i &= \varepsilon^{\mu\nu\rho\sigma}\partial_\mu(\partial_\rho A_\sigma^i - \partial_\sigma A_\rho^i)\\
&= \varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\rho A_\sigma^i - \varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\sigma A_\rho^i \\
&= 0
\end{align*}

Where we noticed that the object ##\partial_\mu \partial_\rho A_\sigma^i## is symmetric under ##\mu \leftrightarrow \rho## and is contracted with the object ##\varepsilon^{\mu\nu\rho\sigma}##, which is antisymmetric under ##\mu \leftrightarrow \rho##. Hence ##\varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\rho A_\sigma^i = 0##. Analogously, ##\varepsilon^{\mu\nu\rho\sigma}\partial_\mu \partial_\sigma A_\rho^i=0##
 
  • #36
So let us now draw our attention back to the main prove. We first see that ##\varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + \varepsilon_{\mu\nu\rho\sigma} g_s f_{ijk} F_i^{\rho \sigma} A_j^{\mu} A_k^{\nu} = 2 \varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma}##, given that ##\varepsilon_{\mu\nu\rho\sigma} = \varepsilon_{\rho\sigma\mu\nu}##.

All is left is to work out the term (let me drop the 2 factor for the explicit computation) ##\varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma}##

\begin{align*}
\varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} &= \varepsilon_{\mu\nu\rho\sigma}g_s f_{ilm}(\partial^\mu A^\nu_i - \partial^\nu A^\mu_i)A_l^{\rho} A_m^{\sigma} \\
&= 2 \varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm} \partial^\mu A^\nu_i A_l^{\rho} A_m^{\sigma}\\
&= \frac 2 3 \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} g_s f_{ilm} A^\nu_i A_l^{\rho} A_m^{\sigma})\\
&= \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} A^\nu_i A_l^{\rho} A_m^{\sigma}) -\frac 1 3 \partial^\mu (\varepsilon_{\mu\nu\rho\sigma} A^\nu_i A_l^{\rho} A_m^{\sigma})
\end{align*}

This smells really good! 😋 (at least to me!)

We finally have

\begin{align*}
G \cdot \tilde G &= \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu})(F_i^{\rho \sigma} + g_s f_{ilm} A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma} + g^2_sf_{ijk}f_{ilm}A_j^{\mu} A_k^{\nu}A_l^{\rho} A_m^{\sigma})\\
&=\varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma} + g_s f_{ijk} A_j^{\mu} A_k^{\nu} F_i^{\rho \sigma})\\
&= \varepsilon_{\mu \nu \rho \sigma} (F_i^{\mu \nu}F_i^{\rho \sigma} + 2g_s f_{ilm}F_i^{\mu \nu}A_l^{\rho} A_m^{\sigma})\\
&= 2\partial_{\mu}(\varepsilon^{\mu \nu \rho \sigma} A_{\nu}^i [G_{\rho \sigma}^i - \frac{g_s}{3}f_{ijk} A_{j\rho} A_{k\sigma}])
\end{align*}

Mmm so my result has a 2 extra factor...

This issue is simply solved by redefining ##G \cdot \tilde G := \frac 1 2 \varepsilon_{\mu \nu \rho \sigma} G_i^{\mu \nu}G_i^{\rho \sigma}## but I might have missed some detail in the computation and that is why I get the 2 extra factor

What do you think? :biggrin:
 
  • #37
Ok, I think the factor 2 is due to the definition of ##\tilde{G}##, but anyway I don't think it is really important.
Regarding your proof, there are some technical details missing, but I think that you have the general idea.
 
  • Like
  • Love
Likes   Reactions: arivero and JD_PM
  • #38
Gaussian97 said:
Ok, I think the factor 2 is due to the definition of ##\tilde{G}##

Oh indeed! The Hodge dual tensor is actually defined as ##\tilde{G}_{i\mu \nu} := \frac 1 2 \varepsilon_{\mu \nu \rho\sigma} G_i^{\rho \sigma}## (I made the analogy from QED from here) so the 2 factor is taken care by the ##\frac 1 2## included in the dual tensor, so the guess was right! :smile:

Vamos! (this is a mother-tongue word I love to use when celebrating something; you could translate it as "let's go!" :) ).

I have recently started to learn more about gauge theories in the context of particle physics and it is a truly fascinating subject. I am currently reading these fantastic notes written by Australian physicist Rod Crewther.

Another discussion in which I have learned A LOT. Thank you very much @Gaussian97, I hope to come across you very very soon.
 
  • Like
Likes   Reactions: vanhees71 and arivero

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K