Is the second derivative of a circle related to an orbiting object?

Click For Summary
The discussion explores the relationship between the second derivative of a circle and the motion of an orbiting object. It highlights the confusion between the direction and magnitude of acceleration in uniform circular motion, clarifying that while the magnitude remains constant, the direction does not. The conversation emphasizes the importance of using parametric equations to analyze motion, revealing that the second derivatives of x(t) and y(t) contribute to the overall acceleration. The use of polar coordinates is suggested as a simpler approach, where both radial acceleration and angular velocity are constant. Understanding these concepts resolves the initial confusion regarding the nature of acceleration in circular motion.
That Neuron
Messages
75
Reaction score
0
Okay!

Earlier today I was thinking about potential energy and how it is related to an orbiting object, O, around a centre, C, from which force emanates if the object O is traveling at radius r from this centre, we conclude that the force given by the change in direction must be equal to the force pulling O towards the field's centre. Great, thanks Captain Obvious. So, I was thinking that the force created by the change in direction of O about C is proportional to the change in the derivative of the function of the orbit.

Since the equation of a circle is (r2 - x2)1/2 it's derivative is equal to x/(r2 - x2)1/2, which derives to produce r2/(r2 - x2)3/2

Which is odd considering it's intuitive to think that whatever change in change in direction around C would be constant. Imagine swinging a bottle around your body, it doesn't pull with more force halfway through the swing.

I thought that perhaps this was due to it being a function of the x axis, so I tried it with parametric equations and got

y=sint
x=cost

dy/dt/dx/dt = cost/-sint = -1/tant = -cot(t) using -cot(t) as the new function for the derivative (y) y=-cot(t), I get -csc(t)/-sin(t), which still isn't constant.

I really don't understand how the second derivative of the direction of a particle around a circle can't be constant.

Can anyone clear this up for me?
 
Physics news on Phys.org
The parametric approach works, but the absolute change in motion is ##\ddot{x}^2+\ddot{y}^2##. You just calculated the acceleration in y-direction - this cannot be constant (it oscillates in y-direction!).
 
I'm not sure why you think that the direction of the acceleration in a uniform circular motion would be constant, because it is not. Differentiate the parametric equations twice with respect to time (that is, find d2x/dt2 and d2y/dt2) and you find that the acceleration is anti-parallel to the radius vector.

Perhaps you have confused direction with magnitude? The magnitude of the acceleration in a uniform circular motion is constant.
 
Filip Larsen said:
Perhaps you have confused direction with magnitude? The magnitude of the acceleration in a uniform circular motion is constant.

That's exactly what I seem to have done, you see I thought that the change in change of the direction of the object's momentum would be proportional to it's velocity. I now understand how the individual second derivatives of x(t) and y(t) respectively determine the rate of change of rate with respect to each axis, which when added together to form x"(t) + y"(t) (as mfb mentioned) do equal a constant, as far as I can tell.
 
The problem is much easier if you use polar coordinates. The radial acceleration is constant and the angular velocity is constant in a circular orbit.
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
Replies
9
Views
2K
Replies
22
Views
3K
  • · Replies 21 ·
Replies
21
Views
12K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K