MHB Is the Series Convergent or Divergent?

Click For Summary
The series $$ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$$ is analyzed for convergence using the limit comparison test. The limit of the ratio of the terms leads to $$ \lim_{{n}\to{\infty}} n^n = \infty$$, indicating that the original series behaves similarly to $$\sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n}}$$. Since $$3^{1 + 3n}$$ grows faster than $$3^n$$, the series $$\sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n}}$$ converges. Therefore, it is concluded that the series $$ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$$ is also convergent.
tmt1
Messages
230
Reaction score
0
I have this:

$$ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$$

And I need to determine if it is convergent or divergent.

I try the limit comparison test against:

$$ \frac{1}{3^{1 + 3n}}$$.

So I need to determine

$$ \lim_{{n}\to{\infty}} \frac{3^{1 + 3n} \cdot n^n}{3^{1 + 3n}}$$

Or

$$ \lim_{{n}\to{\infty}} n^n$$

which is clearly $\infty$.

So that means the initial expression should behave the same as

$$\sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n}}$$.

Clearly $3^{1 + 3n } > 3^n$, therefore $\frac{1}{3^{1 + 3n }} < \frac{1}{3^n}$

Since $$ \sum_{n = 1}^{\infty} \frac{1}{3^{n}}$$ is convergent, then $$ \sum_{n = 1}^{\infty} \frac{1}{3^{1 + 3n }}$$

is convergent.

Thus, $ \sum_{n = 1}^{\infty} \frac{n^n}{3^{1 + 3n}}$ is convergent.
 
Physics news on Phys.org
I would look at:

$$L=\lim_{n\to\infty}\left(\frac{n^n}{3^{1+3n}}\right)=\frac{1}{3}\lim_{n\to\infty}\left(\left(\frac{n}{27}\right)^n\right)$$

Do we have $L=0$? If not, then by the limit test, the series diverges.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K