How to prove this infinite series?

  • #1
5
0
While transforming the equation of the Basel problem, the following infinite series was obtained.

$$\sum_{n=1}^{\infty} \frac{n^2+3n+1}{n^4+2n^3+n^2}=2$$

However I couldn't think of a simple way to prove that.
Can anyone prove that this equation holds true?
 

Answers and Replies

  • #2
Your series can be put on the form of a telescope series and thereby summed up.
$$
\begin{align*}
\sum_{n=1}^\infty\frac{n^2+3n+1}{n^4+2n^3+n^2} &= \sum_{n=1}^\infty\frac{n^2+3n+1}{n^2(n+1)^2} \\
&= \lim_{N\rightarrow\infty}\sum_{n=1}^N\bigg\lbrace\frac{2n^2+3n}{(n+1)^2} - \frac{2(n-1)^2+3(n-1)}{n^2}\bigg\rbrace \\
&= \lim_{N\rightarrow\infty}\frac{2N^2+3N}{(N+1)^2} \\
&= 2,
\end{align*}
$$
where the last equality follows by successive use of l'Hopital's rule.
 
  • #3
You don't need l'Hopital's rule here; just observe [tex]
\frac{2N^2 + 3N}{(N + 1)^2} = \frac{N^2(2 + \frac 3N)}{N^2(1 + \frac1N)^2} = \frac{2 + \frac 3N}{(1 + \frac1N)^2}[/tex] and the result follows from the proposition that the limit of a ratio is the ratio of the limits provided the limit of the denominator is not zero.
 
  • #5
I like to take the chance and remind you of our rules:
  • please report homework questions in technical forums, instead of answering them
  • do not provide full answers, that doesn't help the OP to understand their problem, even in technical forums
  • do not open multiple threads on the same topic
  • homework questions (anyway where they have been posted) require some efforts to be shown from the OP. We are not a solution automaton. Our goal is to teach, not to solve.
This thread is closed.
 
  • Skeptical
Likes Imaxx

Suggested for: How to prove this infinite series?

Replies
2
Views
855
Replies
7
Views
984
Replies
11
Views
375
Replies
0
Views
756
Replies
2
Views
479
Replies
15
Views
2K
Replies
14
Views
1K
Replies
3
Views
935
Back
Top