MHB Is the series $\sum_{k=1}^{\infty}\frac{\arctan(2k)}{1+4k^2}$ convergent?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Divergence Test
Click For Summary
The series $\sum_{k=1}^{\infty}\frac{\arctan(2k)}{1+4k^2}$ is analyzed for convergence using the divergence test and the integral test. The limit of the terms approaches zero, making the divergence test inconclusive. However, applying the integral test shows that the integral converges, indicating that the series converges as well. A limit comparison test with the known convergent series $\sum_{k=1}^{\infty}\frac{1}{4k^2}$ confirms this result. Thus, the series converges.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.f3a.}$
$\textsf{Use the divergence Test to detemine whether the series is divergent}$
\begin{align}
\displaystyle
&\sum_{k=1}^{\infty}\frac{\arctan(2k)}{1+4k^2}\\
\textit{take limit}\\
=&\lim_{{k}\to{\infty}}\frac{\arctan(2k)}{1+4k^2}\\
\\
=&\frac{\arctan(\infty)}{\infty} =\frac{\pi/2}{\infty}=0\\
\therefore inconclusive
\end{align}
$\textsf{Use the Integral Test to detemine whether the series is divergent. positive and continuous terms}$
\begin{align}
\displaystyle
f(k)&=\frac{\arctan(2k)}{1+4k^2}\\
f'(k)&=\frac{2-\arctan(2k)8k}{(1+4k)^2}\\
\textit{as } {{k}\to{\infty}} \, f(k) \textit{ decreases}\\
\int_{1}^{\infty} \frac{\arctan(2k)}{1+4k^2}\,dk&
=\lim_{{k}\to{\infty}}\int_{1}^{b} \frac{\arctan(2k)}{1+4k^2}\,dk\\
&u=\arctan(2k) \therefore du=\frac{2}{1+4k^2}\\
\frac{1}{2}\int u \, du&=\frac{u^2}{4}\\
&=\lim_{{b}\to{\infty}}\frac{1}{4}
\left[(\arctan(2b))^2)-((\arctan(2))^2 )\right] \\
&=\frac{1}{4}\left[\left(\frac{\pi}{2}\right)^2
-(\arctan(2))^2\right] \\
\textit{finite values }\\
&\therefore
\int_{1}^{\infty} \frac{\arctan(2k)}{1+4k^2}\,dk
\textit{ converges }\\
&\therefore
\sum_{k=1}^{\infty}\frac{\arctan(2k)}{1+4k^2}
\textit{ converges }
\end{align}
$\textit{ just seeing where errors are and sugestions? }$
☕
 
Physics news on Phys.org
I would use a limit comparison test. We know:

$$\sum_{k=1}^{\infty}\frac{1}{4k^2}=\frac{\pi^2}{24}$$

Thus we check:

$$\lim_{k\to\infty}\left(\frac{\arctan(2k)}{4k^2+1}\cdot\frac{4k^2}{1}\right)=\frac{\pi}{2}$$

Since the limit is a finite number, we know the original series converges.
 
MarkFL said:
I would use a limit comparison test. We know:

$$\sum_{k=1}^{\infty}\frac{1}{4k^2}=\frac{\pi^2}{24}$$
where does
$\displaystyle

\frac{1}{4k^2}$
come from?
 
karush said:
where does
$\displaystyle

\frac{1}{4k^2}$
come from?

It is the $k$th term of a known convergent series. When we take the $k$th term of the given series and divide by this one, we get an expression for whom the limit at infinity goes to a finite value, thereby showing the given series converges.
 
really appreciate the help
going to spend the rest of the month
doing d/c problems
:cool:
 
Last edited:
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K