Is the Set K Convex and Does It Attain Its Euclidean Distance?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Convex Set
Click For Summary
SUMMARY

The set \( K = \{ x \in \mathbb{R}^n: \sum_{j=1}^n |x_j|^2 \leq 1 \} \) is both closed and convex. The closure is established by demonstrating that the limit of any convergent sequence within \( K \) remains in \( K \). Convexity is shown by proving that any linear combination of points in \( K \) also lies in \( K \). Furthermore, since \( K \) is closed and bounded, it is compact, ensuring that the Euclidean distance from any point \( z \in \mathbb{R}^n \) to \( K \) is attained at a unique point.

PREREQUISITES
  • Understanding of convex sets and their properties
  • Familiarity with the concept of closed sets in topology
  • Knowledge of Euclidean distance and its geometric implications
  • Basic understanding of continuous functions and their properties
NEXT STEPS
  • Study the properties of compact sets in Euclidean spaces
  • Learn about the Cauchy-Schwarz inequality and its applications in convex analysis
  • Explore the concept of support functions and hyperplanes in convex geometry
  • Investigate the implications of the separation theorem in convex analysis
USEFUL FOR

Mathematicians, students studying convex analysis, and anyone interested in optimization problems involving Euclidean spaces.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

We consider the set $K=\{ x \in \mathbb{R}^n: \sum_{j=1}^n |x_j|^2 \leq 1 \}$ and let $ \in \mathbb{R}^n$. Check if the euclidean distance of $z$ from $K$ is attained.

I want to show that $K$ is closed and convex. Then by a theorem, the distance will be attained by a unique point.

I have tried to show that $K$ is closed as follows.

Let $(\overline{x_m})$ be a sequence in $K$ such that $\overline{x_m} \to x \in \mathbb{R}^n$.
We will show that $x \in K$.
$\overline{x_m}=(x_{m1}, x_{m2}, \dots, x_{mn}), x=(x_1, x_2, \dots, x_n)$

Then $|x_{mi}-x_i| \leq ||\overline{x_m}-x||_2= \left( \sum_{j=1}^n |x_{mj}-x_j|^2\right)^{\frac{1}{2}} \to 0$.

Thus $x_{mi} \to x_i$ while $m \to +\infty$ for all $i=1, \dots, n$ with $\sum_{j=1}^n |x_{mj}|^2 \leq 1$ for all $m=1,2, \dots$

Thus $\sum_{j=1}^n |x_j|^2 \leq 1$ and so $\overline{x} \in K$.

In order to show that $K$ is convex , I have thought the following:

Let $x,y \in K, 0<\lambda<1$.
We will show that $(1- \lambda)x+ \lambda y \in K$.

We have $x=(x_1, \dots, x_n), y=(y_1, \dots, y_n)$ and so $(1- \lambda)x+ \lambda y=((1- \lambda)x_1+ \lambda y_1, \dots, (1-\lambda)x_n+ \lambda y_n )$

So it suffices to show that $\sum_{j=1}^n |(1- \lambda) x_j+ \lambda y_j|^2 \leq 1$.

$ |(1- \lambda) x_j+ \lambda y_j| \leq (1- \lambda) |x_j|+ \lambda |y_j|$

So $\sum_{j=1}^n |(1- \lambda) x_j+ \lambda y_j|^2 \leq \sum_{j=1}^n \left( (1- \lambda) |x_j|+ \lambda |y_j|\right)^2= \sum_{j=1}^n \left( (1- \lambda)^2 |x_j|^2+ 2 \lambda (1- \lambda) |x_j| |y_j|+\lambda^2 |y_j|^2\right)= (1- \lambda)^2 \sum_{j=1}^n |x_j|^2 + 2 \lambda (1- \lambda) \sum_{j=1}^n |x_j||y_j| + \lambda^2 \sum_{j=1}^n |y_j|^2$

What bound can we use for $\sum_{j=1}^n |x_j||y_j| $ to show that the above is $\leq 1$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

We consider the set $K=\{ x \in \mathbb{R}^n: \sum_{j=1}^n |x_j|^2 \leq 1 \}$ and let $ \in \mathbb{R}^n$. Check if the euclidean distance of $z$ from $K$ is attained.

I want to show that $K$ is closed and convex. Then by a theorem, the distance will be attained by a unique point.

I have tried to show that $K$ is closed as follows.

Let $(\overline{x_m})$ be a sequence in $K$ such that $\overline{x_m} \to x \in \mathbb{R}^n$.
We will show that $x \in K$.
$\overline{x_m}=(x_{m1}, x_{m2}, \dots, x_{mn}), x=(x_1, x_2, \dots, x_n)$

Then $|x_{mi}-x_i| \leq ||\overline{x_m}-x||_2= \left( \sum_{j=1}^n |x_{mj}-x_j|^2\right)^{\frac{1}{2}} \to 0$.

Thus $x_{mi} \to x_i$ while $m \to +\infty$ for all $i=1, \dots, n$ with $\sum_{j=1}^n |x_{mj}|^2 \leq 1$ for all $m=1,2, \dots$

Thus $\sum_{j=1}^n |x_j|^2 \leq 1$ and so $\overline{x} \in K$.

In order to show that $K$ is convex , I have thought the following:

Let $x,y \in K, 0<\lambda<1$.
We will show that $(1- \lambda)x+ \lambda y \in K$.

We have $x=(x_1, \dots, x_n), y=(y_1, \dots, y_n)$ and so $(1- \lambda)x+ \lambda y=((1- \lambda)x_1+ \lambda y_1, \dots, (1-\lambda)x_n+ \lambda y_n )$

So it suffices to show that $\sum_{j=1}^n |(1- \lambda) x_j+ \lambda y_j|^2 \leq 1$.

$ |(1- \lambda) x_j+ \lambda y_j| \leq (1- \lambda) |x_j|+ \lambda |y_j|$

So $\sum_{j=1}^n |(1- \lambda) x_j+ \lambda y_j|^2 \leq \sum_{j=1}^n \left( (1- \lambda) |x_j|+ \lambda |y_j|\right)^2= \sum_{j=1}^n \left( (1- \lambda)^2 |x_j|^2+ 2 \lambda (1- \lambda) |x_j| |y_j|+\lambda^2 |y_j|^2\right)= (1- \lambda)^2 \sum_{j=1}^n |x_j|^2 + 2 \lambda (1- \lambda) \sum_{j=1}^n |x_j||y_j| + \lambda^2 \sum_{j=1}^n |y_j|^2$

What bound can we use for $\sum_{j=1}^n |x_j||y_j| $ to show that the above is $\leq 1$ ? (Thinking)

Hello Evinda,

A very happy new year to you!

Now.

To show that $K$ is closed, you could use a much more slicker and general argument.
Define a map $f:\mathbf R^n\to \mathbf R$ as
$$f(x)=\sum_{i=1}^n x_i^2$$
This is a continuous map. Note that $K=f^{-1}([0, 1])$. So $K$ is the pre-image of a closed set under a continuous map whence we infer that $K$ is closed.

This is a fairly general technique to show if a set if closed. In fact, anything "defined by an equation" is usually closed.

Now for convexity. Suppose $x, y\in K$, and let $1\leq a\leq 1$.
We need to shoe that $ax+(1-a)y$ is also in $K$.
We have $$\| ax+(1-a)y\|^2 = a^2\|x\|^2+(1-a)^2\|y\|^2+2a(1-a)x\cdot y\leq a^2+(1-a)^2+2a(1-a)x\cdot y$$
where '$\cdot$' denotes the dot product.

Using Cauchy-Schawrz we have $x\cdot y\leq 1$.
Using this we get $\|ax+(1-a)y\|^2\leq a^2+(1-a)^2+2a(1-a)\leq 1$
and thus $ax+(1-a)y\in K$.

We have shown that $K$ is closed and convex.

I would like to point out something. To show that the distance of $z$ from $K$ is achieved, you have used support-separation property of hyperplanes. But this uses too much about the nature of $K$, and proves too much (it proves that the uniqueness of the point achieving minimum distance).

To only prove that distance is achieved, it is sufficient to note that $K$ closed and bounded. This makes $K$ a compact set and thus we are done. Tell me if you need more explanation on this.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K