MHB Is the Space of Real Polynomials of Degree ≤ n a Euclidean Space?

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question I encountered and I need your help to solve it.

Question:

Let \(V\) be the space of real polynomials of degree \(\leq n\).

a) Check that setting \(\left(f(x),\,g(x)\right)=\int_{0}^{1}f(x)g(x)\,dx\) turns \(V\) to a Euclidean space.

b) If \(n=1\), find the distance from \(f(x)=1\) to the linear span \(U=<x>\).

My Answer:

In our notes it's given that an Euclidean space is a pair \((V,\,f)\) where \(V\) is a vector space over \(\mathbb{R}\) and \(f:V\times V\rightarrow\mathbb{R}\) is a positive symmetric bilinear function. So therefore I thought that we have to check whether the given bilinear function is positive symmetric. It's clearly symmetric as interchanging \(f\) and \(g\) won't matter. But to make it positive we shall find a condition. Let,

\[f(x)=a_{0}+a_{1}x+\cdots+a_{n}x^{n}\]

\[g(x)=b_{0}+b_{1}x\cdots+b_{n}x^{n}\]

Then,

\[f(x)g(x)=\sum_{k=0}^{n}\left(\sum_{i=0}^{n}a_{i}b_{k-i}\right)x^{k}\]

Hence we have,

\[\left(f(x),\,g(x)\right)=\int_{0}^{1}f(x)g(x)\,dx>0\]

\[\Rightarrow \sum_{k=0}^{n}\left(\sum_{i=0}^{n}a_{i}b_{k-i}\right)\frac{1}{k+1}>0\]

Is this the condition that we have to obtain in order for \(V\) to become an Euclidean space?
 
Physics news on Phys.org
Usually, a bilinear function f is positive definite iff f(v,v) is non-negative for all v and f(v,v) > 0 for v not zero. If this is what you meant, your conclusion is certainly true. (Apparently, you think positive means f(u,v) > 0 for all u,v. For this interpretation, your result is clearly false. Furthermore, it's impossible to have such a "positive" bilinear form.)
 
johng said:
Usually, a bilinear function f is positive definite iff f(v,v) is non-negative for all v and f(v,v) > 0 for v not zero. If this is what you meant, your conclusion is certainly true. (Apparently, you think positive means f(u,v) > 0 for all u,v. For this interpretation, your result is clearly false. Furthermore, it's impossible to have such a "positive" bilinear form.)

Hi johng, :)

Thanks much for the reply. Yeah, I see the mistake in my interpretation of positive definite. So it seems that the result should be,

\[\Rightarrow \sum_{k=0}^{n}\left(\sum_{i=0}^{n}a_{i}a_{k-i}\right)\frac{1}{k+1}>0\]

Am I correct? I replaced the \(b\) by \(a\).
 
For a fixed v, you must show (v,v)>=0 and (v,v)=0 only for v=0. So for your particular scalar product, let g be a polynomial of degree at most n. Then

$$(g,g)=\int_0^1g(x)^2\,dx\geq0$$ since the integral of a non-negative function is non-negative.

Also $$\int_0^1g(x)^2\,dx=0\text{ implies }g\equiv0$$ which is true by the fact that if the integral of a non-negative function is 0, then the function must be identically 0.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top