MHB Is the Uptake Equation Different When $k_2 = 0$?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Dustinsfl
Messages
2,217
Reaction score
5
The question I have is: when $k_2 = 0$ sketch the uptake $r(u)$ as a function of $u$ and compare it with the Michaelis-Menten uptake.
If $k_2 = 0$, wouldn't that change everything significantly? Does that mean re-do everything with $k_2 = 0$.
Is the Michaelis-Menten uptake just Michaelis constant?$$
S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} C_1 \xrightarrow{k_2} E + P,
$$
$$
S + C_1 \underset{k_{-3}}{\overset{k_3}{\rightleftharpoons}} C_2\xrightarrow{k_4} C_1 + P
$$
Let $s = $, $e = [E]$, $c_1 = C_1$, $c_2 = [C_2]$, and $p = [P]$.
Then by the Law of Mass action, we can write down the differential equation model as:
\begin{align}
\frac{ds}{dt} =& -k_1es + (k_{-1} - k_3s)c_1 + k_{-3}c_2,\\
\frac{dc_1}{dt} =& k_1se - (k_{-1} + k_2 + k_3s)c_1 + (k_{-3} + k_4)c_2,\\
\frac{dc_2}{dt} =& k_3sc_1 - (k_{-3} + k_4)c_2,\\
\frac{de}{dt} =& -k_1se + (k_{-1} + k_2)c_1,\\
\frac{dp}{dt} =& k_2c_2 + k_4c_2
\end{align}
The initial conditions for the differential equation model are
$$
s(0) = s_0,\quad e(0) = e_0,\quad c_1(0) = c_2(0) = p(0) = 0.
$$
Since the enzyme is the catalyst, the enzyme is conserved by adding equations 2, 3, and 4.
$$
\frac{de}{dt} + \frac{dc_1}{dt} + \frac{dc_2}{dt} = 0\Rightarrow e(t) + c_1(t) + c_2(t) = e_0
$$
Then $e(t) = e_0 - c_1(t) - c_2(t)$.
Since $dp/dt$ is uncoupled, we can directly solve for $p(t)$.
$$
\int dp = \int (k_2c_1 + k_4c_2)dt\Rightarrow p(t) = k_2\int c_1dt + k_4\int c_2dt
$$
The only equations left to solve for are equations 1, 2, and 3 which are
\begin{align}
\frac{ds}{dt} =& -k_1e_0s + (k_{-1} + k_1s - k_3s)c_1 + (k_1s + k_{-3})c_2,\notag\\
\frac{dc_1}{dt} =& k_1e_0s - (k_{-1} + k_2 +k_1s +k_3s)c_1 + (k_{-3} + k_4 - k_1s)c_2,\notag\\
\frac{dc_2}{dt} =& k_3sc_1 - (k_{-3} + k_4)c_2,\notag
\end{align}
after substituting $e(t) = e_0 - c_1(t) - c_2(t)$.
By making the substitutions
\begin{alignat*}{4}
\tau &= k_1e_0t, & u &= \frac{s}{s_0}, & v_1 &= \frac{c_1}{e_0}, & v_2 &= \frac{c_2}{e_0},\notag\\
a_1 &= \frac{k_{-1}}{k_1s_0}, &\quad a_2 &= \frac{k_2}{k_1s_0}, &\quad a_3 &= \frac{k_3}{k_1}, &\quad a_4 &= \frac{k_{-3}}{k_1s_0},\notag\\
a_5 &= \frac{k_4}{k_1s_0}, & \epsilon &= \frac{e_0}{s_0}
\end{alignat*}
we can non-dimensionalize then model as
\begin{align}
\frac{du}{d\tau} =& -u + (u -a_3u + a_1)v_1 + (a_4 + u)v_2 = f(u,v_1,v_2),\notag\\
\epsilon\frac{dv_1}{d\tau} =& u - (u + a_3u + a_1 + a_2)v_1 +(a_4 + a_5 - u)v_2 = g_1(u,v_1,v_2),\notag\\
\epsilon\frac{dv_2}{d\tau} =& a_3uv_1 - (a_4 + a_5)v_2 = g_2(u,v_1,v_2).\notag
\end{align}
The initial conditions for the dimensionless model are
$$
u(0) = 1,\quad v_1(0) = v_2(0) = 0.
$$
Just as in class this model is a single perturbation for $0 < \epsilon\ll 1$.
Solving for $v_1$ and $v_2$, we obtain
$$
v_1 = \frac{u}{a_1 + a_2 + u + a_3u^2(a_4 + a_5)^{-1}} \quad\text{and}\quad v_2 = \frac{a_3uv_1}{a_4 + a_5}.
$$
Then
$$
f(u,v_1(u),v_2(u)) = \frac{du}{d\tau} = -u\frac{a_2 + a_3a_5u(a_4 + a_5)^-1}{a_1 + a_2 + u + a_3u^2(a_4 + a_5)^{-1}} = -r(u)
$$
is the uptake equation for $u$.
Let$A = a_2$, $B = a_3a_5(a_4 + a_5)^{-1}$, $C = a_1 + a_2$, and $D = a_3(a_4 + a_5)^{-1}$.
Then
$$
\frac{du}{d\tau} = -r(u) = -u\frac{A + Bu}{C + u + Du^2}.
$$
 
Last edited:
Mathematics news on Phys.org
Would it be a simply substitution or would the non-dimensionalization have to be re-worked?

$$
S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} C_1,
$$
$$
S + C_1 \underset{k_{-3}}{\overset{k_3}{\rightleftharpoons}} C_2\xrightarrow{k_4} C_1 + P
$$
Let $s = $, $e = [E]$, $c_1 = C_1$, $c_2 = [C_2]$, and $p = [P]$.
Then by the Law of Mass action, we can write down the differential equation model as:
\begin{align}
\frac{ds}{dt} =& -k_1es + (k_{-1} - k_3s)c_1 + k_{-3}c_2,\\
\frac{dc_1}{dt} =& k_1se - (k_{-1} + 0 + k_3s)c_1 + (k_{-3} + k_4)c_2,\\
\frac{dc_2}{dt} =& k_3sc_1 - (k_{-3} + k_4)c_2,\\
\frac{de}{dt} =& -k_1se + (k_{-1} + 0)c_1,\\
\frac{dp}{dt} =& 0 + k_4c_2
\end{align}
The initial conditions for the differential equation model are
$$
s(0) = s_0,\quad e(0) = e_0,\quad c_1(0) = c_2(0) = p(0) = 0.
$$
Since the enzyme is the catalyst, the enzyme is conserved by adding equations 2, 3, and 4.
$$
\frac{de}{dt} + \frac{dc_1}{dt} + \frac{dc_2}{dt} = 0\Rightarrow e(t) + c_1(t) + c_2(t) = e_0
$$
Then $e(t) = e_0 - c_1(t) - c_2(t)$.
Since $dp/dt$ is uncoupled, we can directly solve for $p(t)$.
$$
\int dp = \int (0 + k_4c_2)dt\Rightarrow p(t) = 0 + k_4\int c_2dt
$$
The only equations left to solve for are equations 1, 2, and 3 which are
\begin{align}
\frac{ds}{dt} =& -k_1e_0s + (k_{-1} + k_1s - k_3s)c_1 + (k_1s + k_{-3})c_2,\notag\\
\frac{dc_1}{dt} =& k_1e_0s - (k_{-1} + 0 +k_1s +k_3s)c_1 + (k_{-3} + k_4 - k_1s)c_2,\notag\\
\frac{dc_2}{dt} =& k_3sc_1 - (k_{-3} + k_4)c_2,\notag
\end{align}
after substituting $e(t) = e_0 - c_1(t) - c_2(t)$.
By making the substitutions
\begin{alignat*}{4}
\tau &= k_1e_0t, & u &= \frac{s}{s_0}, & v_1 &= \frac{c_1}{e_0}, & v_2 &= \frac{c_2}{e_0},\notag\\
a_1 &= \frac{k_{-1}}{k_1s_0}, &\quad a_2 &= \frac{0}{k_1s_0}=0, &\quad a_3 &= \frac{k_3}{k_1}, &\quad a_4 &= \frac{k_{-3}}{k_1s_0},\notag\\
a_5 &= \frac{k_4}{k_1s_0}, & \epsilon &= \frac{e_0}{s_0}
\end{alignat*}
we can non-dimensionalize then model as
\begin{align}
\frac{du}{d\tau} =& -u + (u -a_3u + a_1)v_1 + (a_4 + u)v_2 = f(u,v_1,v_2),\notag\\
\epsilon\frac{dv_1}{d\tau} =& u - (u + a_3u + a_1 + 0)v_1 +(a_4 + a_5 - u)v_2 = g_1(u,v_1,v_2),\notag\\
\epsilon\frac{dv_2}{d\tau} =& a_3uv_1 - (a_4 + a_5)v_2 = g_2(u,v_1,v_2).\notag
\end{align}
The initial conditions for the dimensionless model are
$$
u(0) = 1,\quad v_1(0) = v_2(0) = 0.
$$
Just as in class this model is a single perturbation for $0 < \epsilon\ll 1$.
Solving for $v_1$ and $v_2$, we obtain
$$
v_1 = \frac{u}{a_1 + 0 + u + a_3u^2(a_4 + a_5)^{-1}} \quad\text{and}\quad v_2 = \frac{a_3uv_1}{a_4 + a_5}.
$$
Then
$$
f(u,v_1(u),v_2(u)) = \frac{du}{d\tau} = -u\frac{0 + a_3a_5u(a_4 + a_5)^-1}{a_1 + 0 + u + a_3u^2(a_4 + a_5)^{-1}} = -r(u)
$$
is the uptake equation for $u$.
Let$A = a_2=0$, $B = a_3a_5(a_4 + a_5)^{-1}$, $C = a_1 + a_2$, and $D = a_3(a_4 + a_5)^{-1}$.
Then
$$
\frac{du}{d\tau} = -r(u) = -u\frac{Bu}{C + u + Du^2}.
$$
 
Michaelis-Menten uptake

So the Michaelis-Menten rate of uptake is
$$
R_0 = \frac{Q_{s_0}}{K_m+s_0}
$$
where $K_m=\dfrac{k_{-1}+k_2}{k_1}$ and $Q_{s_0}=k_2e_0s_0$

Q is the max velocity K_m is the Michaelis constant.

How can I plot this in Mathematica?
 
Re: Michaelis-Menten uptake

​Solved
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top