Zhang Bei
- 2
- 1
- Homework Statement
- Use the fact that the density of states is constant in d = 2 dimensions to show that
Bose-Einstein condensation does not occur no matter how low the temperature. (From David Tong's Lectures)
- Relevant Equations
- [tex]\langle N \rangle = \int_0^\infty dE\,\frac{g(E)}{z^{-1}\exp(\beta E)-1}[/tex]
The density of states of a 2D gas in a box is
g(E)=\frac{Am}{2\pi\hbar^2}\quad.
From this we can obtain
T=-\frac{2\pi\hbar^2N}{mAk_B\log (1-z)}
Inserting z \to 1 gives T_c=0. We conclude that the 2D boson gas doesn't form BEC.However, on the other hand, according to the Bose-Einstein distribution, the ground state has an expected occupancy number of
\langle n_0 \rangle =\frac{1}{z^{-1}-1}If we equate this with N, we would obtain a "critical temperature" of
<br /> T=\frac{2\pi\hbar^2N}{mAk_B\log (N+1)}<br />
For 1mol of "helium" gas in an 1m^2 area has a critical temperature of 8380K.What went wrong? Does this mean the BE distribution needs to be modified in this case? Since z can be pushed arbitrarily close to 1, aren't we always able to force n_0 to reach N?
g(E)=\frac{Am}{2\pi\hbar^2}\quad.
From this we can obtain
T=-\frac{2\pi\hbar^2N}{mAk_B\log (1-z)}
Inserting z \to 1 gives T_c=0. We conclude that the 2D boson gas doesn't form BEC.However, on the other hand, according to the Bose-Einstein distribution, the ground state has an expected occupancy number of
\langle n_0 \rangle =\frac{1}{z^{-1}-1}If we equate this with N, we would obtain a "critical temperature" of
<br /> T=\frac{2\pi\hbar^2N}{mAk_B\log (N+1)}<br />
For 1mol of "helium" gas in an 1m^2 area has a critical temperature of 8380K.What went wrong? Does this mean the BE distribution needs to be modified in this case? Since z can be pushed arbitrarily close to 1, aren't we always able to force n_0 to reach N?
Last edited: