Is there any sense with these squares?

  • Context: MHB 
  • Thread starter Thread starter kpkkpk
  • Start date Start date
  • Tags Tags
    Squares
Click For Summary
SUMMARY

The discussion centers on the relationship between factorials and perfect squares, specifically examining how the expression (⌈√n!⌉)^2 - n! yields perfect squares for integers n from 4 to 16, excluding 12. The author demonstrates this with examples, showing that for certain factorials, the difference results in a perfect square, while for others, such as 12!, it does not. The mathematical reasoning involves expressing n! as a difference of two squares, highlighting the challenge of finding a consistent pattern across all integers.

PREREQUISITES
  • Understanding of factorials and their properties
  • Familiarity with perfect squares and square roots
  • Basic knowledge of number theory, particularly the difference of squares
  • Ability to manipulate mathematical expressions involving ceilings and inequalities
NEXT STEPS
  • Explore the concept of factorial growth rates and their implications in number theory
  • Investigate the properties of perfect squares and their relationships with other mathematical constructs
  • Learn about the Online Encyclopedia of Integer Sequences (OEIS) and how to find sequences related to factorials
  • Study advanced techniques in number theory, particularly those involving the factorization of integers
USEFUL FOR

Mathematicians, educators, students studying number theory, and anyone interested in the properties of factorials and their relationships with perfect squares.

kpkkpk
Messages
5
Reaction score
0
1 = 1^2
1 = 1^2
9 = 3^2
1 = 1^2
81 = 9^2
729 = 27^2
225 = 15^2
324 = 18^2
X
82944 = 288^2
176400 = 420^2
215296 = 464^2
3444736 = 1856^2

So, I am trying to find short method to find factorials. In order to achieve this, I imagined factorials as squares, one edge of which corresponding square root of said factorial. However, as these square roots tend not to be natural numbers but have decimal extension, I chose the next bigger number mimicking factorial edge. That slightly bigger edge I then squared and from it I subtracted the real factorial value in a hope to find a series of natural numbers of some sense...And actually at first I was quite delighted while finding series presented above corresponding factorials 4!, 5!, 6!, 7!, 8!, 9!, 10!, 11!, 13!, 14!, 15!, 16!
As an example, please, look at number 225 (=15^2) in the list above. It associates with 10! (=3628800) in the following way:
10! squared (=10^(1/2)) = 1904,940944...
So, I chose 1905 as enlarged edge of square: 1905^2 = 3629025
From that I subtracted the real value of 10!: 3629025 - 3628800 = 225 = 15^2.

In an analogous way I found other squares presented in the list...but not that one corresponding 12! as 12!^(1/2) = 21886,10518... and 21887^2 - 12! = 39169 is not a square of any natural number. The same problem continued with bigger factorials (17!, 18!, 19!, perhaps more?) as well.

Can someone find any sense with this list or is this just natures cruel joke to lead us into desperation?
 
Mathematics news on Phys.org
kpkkpk said:
1 = 1^2
$\color{red}{n=4:\ \bigl(\lceil\sqrt {4!}\rceil\bigr)^2 - 4! = 25 - 24 =} 1 = 1^2$
$\color{red}{n=5:\ \bigl(\lceil\sqrt {5!}\rceil\bigr)^2 - 5! = 121 - 120 =} 1 = 1^2$
$\color{red}{n=6:\ 27^2 - 6! = 729 - 720 =} 9 = 3^2$
$\color{red}{n=7:\ 71^2 - 7! = 5041 - 5040 =} 1 = 1^2$
$\color{red}{n=8:\ 201^2 - 8! = 49491 - 40320 =} 81 = 9^2$
$\color{red}{n=9:\ }729 = 27^2$
$\color{red}{n=10:\ }225 = 15^2$
$\color{red}{n=11:\ }324 = 18^2$
X
$\color{red}{n=13:\ }82944 = 288^2$
$\color{red}{n=14:\ }176400 = 420^2$
$\color{red}{n=15:\ }215296 = 464^2$
$\color{red}{n=16:\ }3444736 = 1856^2$

So, I am trying to find short method to find factorials. In order to achieve this, I imagined factorials as squares, one edge of which corresponding square root of said factorial. However, as these square roots tend not to be natural numbers but have decimal extension, I chose the next bigger number mimicking factorial edge. That slightly bigger edge I then squared and from it I subtracted the real factorial value in a hope to find a series of natural numbers of some sense...And actually at first I was quite delighted while finding series presented above corresponding factorials 4!, 5!, 6!, 7!, 8!, 9!, 10!, 11!, 13!, 14!, 15!, 16!
As an example, please, look at number 225 (=15^2) in the list above. It associates with 10! (=3628800) in the following way:
10! squared (=10^(1/2)) = 1904,940944...
So, I chose 1905 as enlarged edge of square: 1905^2 = 3629025
From that I subtracted the real value of 10!: 3629025 - 3628800 = 225 = 15^2.

In an analogous way I found other squares presented in the list...but not that one corresponding 12! as 12!^(1/2) = 21886,10518... and 21887^2 - 12! = 39169 is not a square of any natural number. The same problem continued with bigger factorials (17!, 18!, 19!, perhaps more?) as well.

Can someone find any sense with this list or is this just natures cruel joke to lead us into desperation?
This is a neat investigation, based on the fact that for each integer $n$ from $4$ to $16$, apart from $12$, $\bigl(\lceil\sqrt {n!}\rceil\bigr)^2 - n!$ is a perfect square (where the ceiling symbols $\lceil\ \ \rceil$ indicate the next integer above the enclosed number). I have added some comments in red to the above quote, to emphasise the pattern.

So, why does this work for some integers but not for others?

We can write the equation $\bigl(\lceil\sqrt {n!}\rceil\bigr)^2 - n! = \text{square}$ as $n! = a^2-b^2$, where we want $a^2$ to be as close as possible to $n!$ (so that $a = \lceil\sqrt {n!}\rceil$) and therefore $b^2$ should be as small as possible. If we factorise the right side as $n! = (a+b)(a-b)$ then what we are trying to do is to express $n!$ as a product of two integers that are as close as possible to each other. This can be done as follows, starting with $n=4$: $$4! = 4\cdot 3\cdot 2\cdot 1 = (3\cdot 2)(4\cdot 1) = 6\cdot 4 = (5+1)(5-1) = 5^2 - 1^2.$$ In the same way, $$5! = (4\cdot 3)(5\cdot 2) = (11+1)(11-1) = 11^2 - 1^2,$$ $$6! = (5\cdot 3\cdot 2)(6\cdot 4\cdot 1) = (27+3)(27-3) = 27^2 - 3^2,$$ $$7! = (6\cdot 4\cdot 3)(7\cdot 5\cdot 2) = 71^2-1^2,$$ $$8! = (8\cdot 6\cdot 4\cdot 1)(7\cdot 5\cdot 3\cdot 2) = 201^2 - 9^2,$$ $$9! = (9\cdot 7\cdot 5\cdot 2)(8\cdot 6\cdot 4\cdot 3) = 603^2 - 27^2,$$ $$10! = (10\cdot 8\cdot 6\cdot 4\cdot 1)(9\cdot 7\cdot 5\cdot 3\cdot 2) = 1905^2 - 15^2,$$ $$11! = (11\cdot 8\cdot 6\cdot 4\cdot 3)(10\cdot 9\cdot 7\cdot 5\cdot 2) = 6318^2 - 18^2.$$ The way that I factorised $(n+2)!$ was to take the factorisation for $n!$, multiply the smaller of its two factors by $n+2$ and multiply the larger of its two factors by $n+1$. That way, I would hope to get a factorisation of $(n+2)!$ into two nearly equal factors. When we get to $n=12$, the result is $$12! = (12\cdot 9\cdot 7\cdot 5\cdot 3\cdot 2)(11\cdot 10\cdot 8\cdot 6\cdot 4\cdot 1) = 21900^2 - 780^2.$$ Here, for the first time, the larger of the two squares is not $\bigl(\lceil\sqrt {n!}\rceil\bigr)^2$. In fact $\lceil\sqrt {12!}\rceil = 21887 < 21900.$

So I think the best one can say is that (for $n\geqslant 4$) $n!$ can always be expressed as the difference of two squares, the larger of which is fairly close to $\bigl(\lceil\sqrt {n!}\rceil\bigr)^2$ but cannot necessarily be chosen to be equal to it.
 
Many thanks for you Opalg for detailed answer.
I also found this same series of squares from Online Ensyclopedia of Integer Sequences (OEIS) with code A038202.
 

Similar threads

  • · Replies 68 ·
3
Replies
68
Views
12K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
2K