Is this a Killing vector field?

Click For Summary
SUMMARY

The discussion focuses on identifying Killing vector fields in a specific gravitational wave spacetime described by the metric $$g = a(u) (x^2-y^2)du^2 + 2du dw + dx^2 + dy^2$$. The primary Killing vector field identified is $$\partial/\partial w$$. The proposed method for finding additional Killing vector fields involves using the condition $$L_X g = 0$$, where $$X = xf(u) \frac{\partial}{\partial w} + p(u) \frac{\partial}{\partial x}$$. The participants suggest deriving conditions on the functions $$f(u)$$ and $$p(u)$$ to satisfy the Killing equation, emphasizing the need for careful expansion of terms.

PREREQUISITES
  • Understanding of Killing vector fields in differential geometry
  • Familiarity with Lie derivatives and their application to metrics
  • Knowledge of gravitational wave spacetimes and their mathematical representation
  • Proficiency in manipulating differential forms and one-forms
NEXT STEPS
  • Study the properties of Killing vector fields in the context of general relativity
  • Learn about the Lie derivative and its role in differential geometry
  • Explore the derivation and implications of Killing's equation
  • Investigate the specific gravitational wave metrics and their physical significance
USEFUL FOR

The discussion is beneficial for theoretical physicists, mathematicians specializing in differential geometry, and researchers studying gravitational waves and their properties.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
There is a gravitational wave spacetime described by$$g = a(u) (x^2-y^2)du^2 + 2du dw + dx^2 + dy^2$$There is one obvious Killing vector field, ##\partial/\partial w \equiv \partial_w##. To find some more, it's suggested to try:$$X = xf(u) \frac{\partial}{\partial w} + p(u) \frac{\partial}{\partial x}$$In principle, you could compute the connection coefficients, write out Killing's equation, and verify each component. But that is generally tedious, so instead I thought it may be easier to use directly the condition ##L_X g = 0##. Explicitly,\begin{align*}
0 = L_X g &= L_{xf \partial_w} g + L_{p \partial_x} g \\
&= \left[ xf L_{\partial_w} g + d(xf) \wedge i_{\partial_w} g \right] + \left[ p L_{\partial_x} g + dp \wedge i_{\partial_x} g\right] \\
&= d(xf) \wedge i_{\partial_w} g + p L_{\partial_x} g + dp \wedge i_{\partial_x} g \\ \\
&= (fdx + xf'(u) du) \wedge i_{\partial_w} g + p L_{\partial_x} g + p'(u) du \wedge i_{\partial_x} g
\end{align*}
where I used ##L_{\partial_w} g = 0##. Here ##i_{\partial_w} g## and ##i_{\partial_x} g## are one-forms with components \begin{align*}
(i_{\partial_w} g)_{\alpha} &= g_{w\alpha} = g_{wu} \delta^u_{\alpha} \\
(i_{\partial_x} g)_{\alpha} &= g_{x\alpha} = g_{xx} \delta^x_{\alpha}
\end{align*}Any ideas how to find conditions on ##f(u)## and ##p(u)## for ##X## to be Killing? Maybe just a case of expanding out the terms, which is probably a good idea to try...
 
Physics news on Phys.org
In fact, you can re-write it as\begin{align*}
0 = L_X g &= (f(u)g_{uu} - p'(u) g_{xx}) dx \wedge du + pL_{\partial_x} g \\
&= \left[ f(u)a(u)(x^2-y^2) - p'(u) \right] dx \wedge du + p L_{\partial_x} g
\end{align*}So you need to arrange$$L_{\partial_x} g = - \frac{1}{p(u)} \left[ f(u)a(u)(x^2-y^2) - p'(u) \right] dx \wedge du$$...? That can't be it...
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 38 ·
2
Replies
38
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K