I Is this a Killing vector field?

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
There is a gravitational wave spacetime described by$$g = a(u) (x^2-y^2)du^2 + 2du dw + dx^2 + dy^2$$There is one obvious Killing vector field, ##\partial/\partial w \equiv \partial_w##. To find some more, it's suggested to try:$$X = xf(u) \frac{\partial}{\partial w} + p(u) \frac{\partial}{\partial x}$$In principle, you could compute the connection coefficients, write out Killing's equation, and verify each component. But that is generally tedious, so instead I thought it may be easier to use directly the condition ##L_X g = 0##. Explicitly,\begin{align*}
0 = L_X g &= L_{xf \partial_w} g + L_{p \partial_x} g \\
&= \left[ xf L_{\partial_w} g + d(xf) \wedge i_{\partial_w} g \right] + \left[ p L_{\partial_x} g + dp \wedge i_{\partial_x} g\right] \\
&= d(xf) \wedge i_{\partial_w} g + p L_{\partial_x} g + dp \wedge i_{\partial_x} g \\ \\
&= (fdx + xf'(u) du) \wedge i_{\partial_w} g + p L_{\partial_x} g + p'(u) du \wedge i_{\partial_x} g
\end{align*}
where I used ##L_{\partial_w} g = 0##. Here ##i_{\partial_w} g## and ##i_{\partial_x} g## are one-forms with components \begin{align*}
(i_{\partial_w} g)_{\alpha} &= g_{w\alpha} = g_{wu} \delta^u_{\alpha} \\
(i_{\partial_x} g)_{\alpha} &= g_{x\alpha} = g_{xx} \delta^x_{\alpha}
\end{align*}Any ideas how to find conditions on ##f(u)## and ##p(u)## for ##X## to be Killing? Maybe just a case of expanding out the terms, which is probably a good idea to try...
 
Physics news on Phys.org
In fact, you can re-write it as\begin{align*}
0 = L_X g &= (f(u)g_{uu} - p'(u) g_{xx}) dx \wedge du + pL_{\partial_x} g \\
&= \left[ f(u)a(u)(x^2-y^2) - p'(u) \right] dx \wedge du + p L_{\partial_x} g
\end{align*}So you need to arrange$$L_{\partial_x} g = - \frac{1}{p(u)} \left[ f(u)a(u)(x^2-y^2) - p'(u) \right] dx \wedge du$$...? That can't be it...
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top