MHB Is this a well-formed set-builder notation?

Click For Summary
Sets A and C are equivalent as they both represent ordered pairs in R², while set B is not equivalent due to its ambiguous notation, which does not specify the order of elements. The discussion highlights that A and C correctly define their elements as ordered pairs, making the order significant, whereas B lacks this clarity. A specific example illustrates that while (5,1) does not belong to A, it could satisfy the condition for B, demonstrating the difference in interpretation. Additionally, B is criticized for not adhering to well-formed set-builder notation, which should clearly define the relationship between elements. Overall, the consensus confirms that A and C are equivalent, but B is not.
Dethrone
Messages
716
Reaction score
0
Are these three sets equivalent?

$$A=\left\{(x,y):x,y\in\Bbb{R},y\ge x^2-1\right\}$$
$$B=\left\{x,y\in\Bbb{R}:y\ge x^2-1\right\}$$
$$C=\left\{(x,y)\in\Bbb{R}^2:y\ge x^2-1\right\}$$

I am thinking that $A$ and $C$ are, but not $B$ as it might be ambigious as to which dimension it is in, i.e it could be in $\Bbb{R}^3$, where any value of $z$ will satisfy. Am I right? :D
 
Physics news on Phys.org
Rido12 said:
Are these three sets equivalent?

$$A=\left\{(x,y):x,y\in\Bbb{R},y\ge x^2-1\right\}$$
$$B=\left\{x,y\in\Bbb{R}:y\ge x^2-1\right\}$$
$$C=\left\{(x,y)\in\Bbb{R}^2:y\ge x^2-1\right\}$$

I am thinking that $A$ and $C$ are, but not $B$ as it might be ambigious as to which dimension it is in, i.e it could be in $\Bbb{R}^3$, where any value of $z$ will satisfy. Am I right? :D

(Wave) Happy new year! (Party)

Yes, you are right.

At the set $A$ we have the ordered pair $(x,y)$ such that $x,y \in \mathbb{R}$ so it is meant that $(x,y) \in \mathbb{R}^2$.
The set $B$ isn't equivalent to the other two because of the fact that at the sets $A,C$ we consider an ordered pair and and so the order in which the objects appear is significant, but for the set $B$ this doesn't hold.
For example, if we are given $x=5$, $y=1$, we check if $(5,1) \in A$ that does not hold since it doesn't hold that $1 \geq 5^2-1$.
For the set $B$ we check if $y \geq x^2-1$ which holds by taking $y=5$ and $x=1$.
 
Last edited:
Rido12 said:
Are these three sets equivalent?
Sets can be equal, and definitions can be equivalent.

Rido12 said:
$$B=\left\{x,y\in\Bbb{R}:y\ge x^2-1\right\}$$
This is not a well-formed set-builder notation. A well-formed notation has the form $\{x\mid P(x)\}$, $\{x\in A\mid P(x)\}$ or $\{f(x)\mid P(x)\}$, but not $\{x,y\in A\mid P(x,y)\}$.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K