Is this a well-formed set-builder notation?

Click For Summary
SUMMARY

The discussion centers on the equivalence of three sets defined using set-builder notation: A, B, and C. Set A is defined as A = {(x,y): x,y ∈ ℝ, y ≥ x² - 1}, while set C is C = {(x,y) ∈ ℝ²: y ≥ x² - 1}. Both A and C are equivalent as they represent ordered pairs in ℝ². Set B, defined as B = {x,y ∈ ℝ: y ≥ x² - 1}, is not equivalent to A and C due to its ambiguous dimensionality and lack of ordered pairs, making it a poorly formed set-builder notation.

PREREQUISITES
  • Understanding of set-builder notation
  • Familiarity with ordered pairs in Cartesian coordinates
  • Knowledge of real numbers and their properties
  • Basic concepts of mathematical equivalence
NEXT STEPS
  • Study the formal definitions of set-builder notation
  • Learn about Cartesian products and their implications in set theory
  • Explore the differences between ordered and unordered sets
  • Investigate the implications of dimensionality in mathematical sets
USEFUL FOR

Mathematicians, educators, students studying set theory, and anyone interested in understanding the nuances of set-builder notation and mathematical equivalence.

Dethrone
Messages
716
Reaction score
0
Are these three sets equivalent?

$$A=\left\{(x,y):x,y\in\Bbb{R},y\ge x^2-1\right\}$$
$$B=\left\{x,y\in\Bbb{R}:y\ge x^2-1\right\}$$
$$C=\left\{(x,y)\in\Bbb{R}^2:y\ge x^2-1\right\}$$

I am thinking that $A$ and $C$ are, but not $B$ as it might be ambigious as to which dimension it is in, i.e it could be in $\Bbb{R}^3$, where any value of $z$ will satisfy. Am I right? :D
 
Physics news on Phys.org
Rido12 said:
Are these three sets equivalent?

$$A=\left\{(x,y):x,y\in\Bbb{R},y\ge x^2-1\right\}$$
$$B=\left\{x,y\in\Bbb{R}:y\ge x^2-1\right\}$$
$$C=\left\{(x,y)\in\Bbb{R}^2:y\ge x^2-1\right\}$$

I am thinking that $A$ and $C$ are, but not $B$ as it might be ambigious as to which dimension it is in, i.e it could be in $\Bbb{R}^3$, where any value of $z$ will satisfy. Am I right? :D

(Wave) Happy new year! (Party)

Yes, you are right.

At the set $A$ we have the ordered pair $(x,y)$ such that $x,y \in \mathbb{R}$ so it is meant that $(x,y) \in \mathbb{R}^2$.
The set $B$ isn't equivalent to the other two because of the fact that at the sets $A,C$ we consider an ordered pair and and so the order in which the objects appear is significant, but for the set $B$ this doesn't hold.
For example, if we are given $x=5$, $y=1$, we check if $(5,1) \in A$ that does not hold since it doesn't hold that $1 \geq 5^2-1$.
For the set $B$ we check if $y \geq x^2-1$ which holds by taking $y=5$ and $x=1$.
 
Last edited:
Rido12 said:
Are these three sets equivalent?
Sets can be equal, and definitions can be equivalent.

Rido12 said:
$$B=\left\{x,y\in\Bbb{R}:y\ge x^2-1\right\}$$
This is not a well-formed set-builder notation. A well-formed notation has the form $\{x\mid P(x)\}$, $\{x\in A\mid P(x)\}$ or $\{f(x)\mid P(x)\}$, but not $\{x,y\in A\mid P(x,y)\}$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
48
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K