bugatti79
- 786
- 4
Is the subset A a subspace of W
W=\left \{ \begin{bmatrix}<br /> 1 &1 \\ <br /> a_{21}& a_{22} \\ <br /> a_{31}& a_{32} <br /> \end{bmatrix} :a_{ij} \in \mathbb{C}\right \}
Let A=\begin{bmatrix}<br /> 1 &1 \\ <br /> a_{21}& a_{22}\\ <br /> a_{31}& a_{32} <br /> \end{bmatrix}
A \in W
Then 2A \in W since
2A=2\begin{bmatrix}<br /> 1 &1 \\ <br /> a_{21}& a_{22}\\ <br /> a_{31}& a_{32} <br /> \end{bmatrix}
Is this correct? My notes is telling its NOT closed under scalar multiplication which I don't think is correct.
W=\left \{ \begin{bmatrix}<br /> 1 &1 \\ <br /> a_{21}& a_{22} \\ <br /> a_{31}& a_{32} <br /> \end{bmatrix} :a_{ij} \in \mathbb{C}\right \}
Let A=\begin{bmatrix}<br /> 1 &1 \\ <br /> a_{21}& a_{22}\\ <br /> a_{31}& a_{32} <br /> \end{bmatrix}
A \in W
Then 2A \in W since
2A=2\begin{bmatrix}<br /> 1 &1 \\ <br /> a_{21}& a_{22}\\ <br /> a_{31}& a_{32} <br /> \end{bmatrix}
Is this correct? My notes is telling its NOT closed under scalar multiplication which I don't think is correct.
Last edited by a moderator: