Prove there does not exist invertible matrix C satisfying A = CB

  • Thread starter songoku
  • Start date
  • Tags
    Matrix
In summary, using the method of reasoning with the kernel, it can be shown that the matrix C does not exist, as the first three columns of A cannot be mapped from the dependent columns of B. This is independent of the invertibility of C.
  • #1
songoku
2,292
325
Homework Statement
Please see below
Relevant Equations
Matrix Multiplication
1681226190098.png


My attempt:

Let C =
$$\begin{pmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{pmatrix}$$

If C is multiplied by B, then:

1)
a21 = c21 . b11
0 = c21 . b11 ##\rightarrow c_{21}=0##

2)
a31 = c31 . b11
0 = c31 . b11 ##\rightarrow c_{31}=0##

3)
a32 = c32 . b22
0 = c32 . b22 ##\rightarrow c_{32}=0##

But a33 = c31 . b13 + c32 . b23 + c33 . b33 = 0, which contradicts the restriction from the question

So actually matrix C does not exist, not only invertible matrix C does not exist but also non - invertible matrix C can not exist.

Is this what the question wants? Or I am missing something?

Thanks
 
Physics news on Phys.org
  • #2
songoku said:
Homework Statement: Please see below
Relevant Equations: Matrix Multiplication

View attachment 324741

My attempt:

Let C =
$$\begin{pmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{pmatrix}$$

If C is multiplied by B, then:

1)
a21 = c21 . b11
0 = c21 . b11 ##\rightarrow c_{21}=0##

2)
a31 = c31 . b11
0 = c31 . b11 ##\rightarrow c_{31}=0##

3)
a32 = c32 . b22
0 = c32 . b22 ##\rightarrow c_{32}=0##

But a33 = c31 . b13 + c32 . b23 + c33 . b33 = 0, which contradicts the restriction from the question

So actually matrix C does not exist, not only invertible matrix C does not exist but also non - invertible matrix C can not exist.

Is this what the question wants? Or I am missing something?

Thanks
Looks ok. Whether you should calculate it, or reason by a vector in the kernel cannot be said. That depends on the context that you didn't provide.
 
  • Like
Likes songoku
  • #3
fresh_42 said:
Looks ok. Whether you should calculate it, or reason by a vector in the kernel cannot be said. That depends on the context that you didn't provide.
If the context you mean is related to "Relevant Equations", I want to clarify that what I wrote in there was actually the method I could think of to solve this question, not the method I must use so I really want to learn another approach to solve the question.

I have no idea how to reason by a vector in the kernel. Kernel is null space so what I have in mind is something like this:

Let C be the transformation matrix T that transforms B to A so T(B) = A.
Kernel of T is the set of all B such that T(B) = 0 but not all elements in A is zero so I don't really know how to use kernel to solve the question.

Thanks
 
  • #5
Thank you very much fresh_42
 
  • #6
To say how you can approach this thinking about kernels: If ##C## is invertible, then the kernel (I'm more used to using the word 'nullspace' when describing matrices and kernel when describing linear maps, but this is just terminology) of ##B## and the kernel of ##A=CB## are the same. However, the first three columns of ##A## are independent, so there is no nonzero element of the kernel of the form ##\begin{pmatrix} * \\ * \\ * \\0\end{pmatrix}## whereas for ##B##, the first three columns are dependent, so there is such an element in the kernel.
 
  • Like
Likes mathwonk and songoku
  • #7
to rephrase this nice comment, the matrix C maps the first three columns of B to the first three columns of A, but that is impossible, since dependent columns cannot map to independent ones. I.e. the fact that A and B have 4 columns is a smoke screen, and one can ask the question about their 3x3 left parts, where it is clear. Note also that this does not use invertibility of C either. In terms of the kernel, it uses only that the kernel of CB contains the kernel of B, whether C is invertible or not.
 
Last edited:
  • Like
Likes Infrared and songoku

1. What does it mean for a matrix to be invertible?

An invertible matrix is a square matrix that has a unique solution for every system of equations it represents. This means that it can be transformed into an identity matrix through row operations.

2. Can a matrix be invertible if it has a determinant of 0?

No, a matrix with a determinant of 0 is not invertible. This is because a determinant of 0 indicates that the matrix is not full rank, meaning it does not have a unique solution for every system of equations it represents.

3. How can I prove that there does not exist an invertible matrix C satisfying A = CB?

You can prove this by contradiction. Assume that there exists an invertible matrix C satisfying A = CB. Then, you can show that this leads to a contradiction, such as a determinant of 0 or a non-unique solution for the system of equations. This proves that the initial assumption was false and there does not exist an invertible matrix C satisfying A = CB.

4. Is it possible for A to be equal to CB if C is not invertible?

Yes, it is possible for A to be equal to CB if C is not invertible. In this case, C cannot be used to transform A into an identity matrix, but it can still be used to transform A into a matrix with the same dimensions and the same number of linearly independent rows or columns.

5. Are there any real-world applications for proving that there does not exist an invertible matrix C satisfying A = CB?

Yes, this type of proof is commonly used in linear algebra and other mathematical fields to show that certain solutions or equations do not exist. It can also be applied in engineering, physics, and other scientific fields to prove the non-existence of certain physical phenomena or solutions.

Similar threads

  • Math Proof Training and Practice
6
Replies
175
Views
20K
Back
Top