# Is this the correct way to compute the row echelon form?

#### kostoglotov

This is actually a pretty simple thing, but the ref(A) that I compute on paper is different from the ref(A) that my TI-89 gives me.

Compute ref(A) where A = $\begin{bmatrix} 1 & 2\\ 3 & 8 \end{bmatrix}$

$$\\ \begin{bmatrix}1 & 2\\ 3 & 8\end{bmatrix} \ r_2 \rightarrow r_2 - 3 \times r_1 \\ \\ \begin{bmatrix}1 & 2\\ 0 & 2 \end{bmatrix} \ r_2 \rightarrow \frac{1}{2} \times r_2 \\ \\ \begin{bmatrix}1 & 2\\ 0 & 1 \end{bmatrix}$$

Now I would have thought that this last matrix, A = $\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}$ would be the ref(A).

But my TI-89 gives ref(A) = $\begin{bmatrix} 1 & \frac{8}{3}\\ 0 & 1 \end{bmatrix}$ and this is not the rref(A), the rref(A) is just the 2x2 identity matrix.

Related Linear and Abstract Algebra News on Phys.org

#### Mark44

Mentor
This is actually a pretty simple thing, but the ref(A) that I compute on paper is different from the ref(A) that my TI-89 gives me.

Compute ref(A) where A = $\begin{bmatrix} 1 & 2\\ 3 & 8 \end{bmatrix}$

$$\\ \begin{bmatrix}1 & 2\\ 3 & 8\end{bmatrix} \ r_2 \rightarrow r_2 - 3 \times r_1 \\ \\ \begin{bmatrix}1 & 2\\ 0 & 2 \end{bmatrix} \ r_2 \rightarrow \frac{1}{2} \times r_2 \\ \\ \begin{bmatrix}1 & 2\\ 0 & 1 \end{bmatrix}$$

Now I would have thought that this last matrix, A = $\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}$ would be the ref(A).
Yes, I agree.
kostoglotov said:
But my TI-89 gives ref(A) = $\begin{bmatrix} 1 & \frac{8}{3}\\ 0 & 1 \end{bmatrix}$ and this is not the rref(A), the rref(A) is just the 2x2 identity matrix.
I'm guessing that your calculator switched the two rows, and then did row reduction. If you start with this matrix --
\begin{bmatrix}
3 & 8\\
1 & 2 \end{bmatrix}
-- row reduction gives you the matrix the calculator shows.

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving