- #1
Adel Makram
- 635
- 15
Hi,
For a 2 x 2 matrix ##A## representing a Markov transitional probability, we can compute the stationary vector ##x## from the relation $$Ax=x$$
But can we compute ##A## of the 2x2 matrix if we know the stationary vector ##x##?
The matrix has 4 unknowns we should have 4 equations;
so for a ##A = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}## , we got
$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
\alpha\\
\beta
\end{bmatrix}=
\begin{bmatrix}
\alpha\\
\beta
\end{bmatrix}
$$
The system of 4 equations;
$$\alpha a+\beta b=\alpha, \alpha c +\beta d=\beta, a+c=1, b+d=1 $$
Given that ##\alpha## and ##\beta## are known.
For a 2 x 2 matrix ##A## representing a Markov transitional probability, we can compute the stationary vector ##x## from the relation $$Ax=x$$
But can we compute ##A## of the 2x2 matrix if we know the stationary vector ##x##?
The matrix has 4 unknowns we should have 4 equations;
so for a ##A = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}## , we got
$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
\alpha\\
\beta
\end{bmatrix}=
\begin{bmatrix}
\alpha\\
\beta
\end{bmatrix}
$$
The system of 4 equations;
$$\alpha a+\beta b=\alpha, \alpha c +\beta d=\beta, a+c=1, b+d=1 $$
Given that ##\alpha## and ##\beta## are known.