- #1
LagrangeEuler
- 717
- 22
I am confused. Look for instance cyclic ##C_2## group representation where
[tex]D(e)=
\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix} [/tex]
and
[tex]D(g)=
\begin{bmatrix}
0 & 1\\
1 & 0
\end{bmatrix} [/tex]
and let's take invertible matrix
[tex]A=
\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}. [/tex]
Then
[tex]A^{-1}=
\frac{1}{2}\begin{bmatrix}
-4 & 2\\
3 & -1
\end{bmatrix} [/tex]
Then
[tex]\tilde{D}(g)=A^{-1}\cdot D(g) \cdot A=
\frac{1}{2}\begin{bmatrix}
-4 & 2\\
3 & -1
\end{bmatrix} \cdot
\begin{bmatrix}
0 & 1\\
1 & 0
\end{bmatrix} \cdot
\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}=
\begin{bmatrix}
-5 & -6\\
5 & 5
\end{bmatrix}
[/tex]
end that is not second order element, i.e. ##\tilde{D}(g)\cdot \tilde{D}(g)## is not equal to ##I##. Why is that the case if with this transform one should get equivalent representation of group ##C_2##?
[tex]D(e)=
\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix} [/tex]
and
[tex]D(g)=
\begin{bmatrix}
0 & 1\\
1 & 0
\end{bmatrix} [/tex]
and let's take invertible matrix
[tex]A=
\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}. [/tex]
Then
[tex]A^{-1}=
\frac{1}{2}\begin{bmatrix}
-4 & 2\\
3 & -1
\end{bmatrix} [/tex]
Then
[tex]\tilde{D}(g)=A^{-1}\cdot D(g) \cdot A=
\frac{1}{2}\begin{bmatrix}
-4 & 2\\
3 & -1
\end{bmatrix} \cdot
\begin{bmatrix}
0 & 1\\
1 & 0
\end{bmatrix} \cdot
\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}=
\begin{bmatrix}
-5 & -6\\
5 & 5
\end{bmatrix}
[/tex]
end that is not second order element, i.e. ##\tilde{D}(g)\cdot \tilde{D}(g)## is not equal to ##I##. Why is that the case if with this transform one should get equivalent representation of group ##C_2##?