MHB Is this triangle an isosceles triangle?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Triangle
AI Thread Summary
The discussion focuses on determining whether triangle ABC, with vertices A(0, 2), B(7, 4), and C(2, -5), is isosceles using the distance formula. The calculations reveal that sides AB and AC are equal in length, while side BC is different. This confirms that triangle ABC meets the criteria for being classified as an isosceles triangle. Additionally, it is noted that an equilateral triangle is a specific type of isosceles triangle. The conclusion is that triangle ABC is indeed isosceles.
mathdad
Messages
1,280
Reaction score
0
Use the distance formula to show that the triangle with the given vertices is an isosceles triangle.

A(0, 2), B(7, 4), C(2, -5)

I must use the distance formula to find AB, BC and AC.
Two sides or lengths must be equal and one side different to be an isosceles triangle.

Correct?
 
Mathematics news on Phys.org
Yes, the distance formula would be a good way to proceed, but recall, an equilateral triangle is a special case of an isosceles triangle...so, you could have all 3 sides equal in length and still call it an isosceles triangle...much like you can call a square a rectangle that just happens to have all 4 sides being equal in length.
 
MarkFL said:
Yes, the distance formula would be a good way to proceed, but recall, an equilateral triangle is a special case of an isosceles triangle...so, you could have all 3 sides equal in length and still call it an isosceles triangle...much like you can call a square a rectangle that just happens to have all 4 sides being equal in length.

I will show my work when time allows.
 
I will not answer this question using MathMagic Lite.

A(0, 2), B(7, 4), C(2, -5)

AB = sqrt{(7 - 0)^2 + (4 - 2)^2}

AB = sqrt{49 + 4}

AB = sqrt53}

BC = sqrt{(2 - 7)^2 + (-5 - 4)^2}

BC = sqrt{25 + 81}

BC = sqrt{106}

AC = sqrt{(2 - 0)^2 + (-5 - 2)^2}

AC = sqrt{4 + 49}

AC = sqrt{53}

Side AB = side AC.

BC is different than the other two sides of the triangle.

Therefore, triangle ABC is isosceles.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top