Is this Trigonometric Expression a Constant Function of x?

Click For Summary
SUMMARY

The expression $\sin^2(x+a)+\sin^2(x+b)-2\cos (a-b)\sin (x+a)\sin (x+b)$ is proven to be a constant function of $x$. By applying trigonometric identities and simplifications, it can be shown that the variable $x$ does not affect the overall value of the expression. The key steps involve recognizing the periodic properties of sine and cosine functions and how they interact within the given formula.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with sine and cosine functions
  • Basic knowledge of algebraic manipulation
  • Ability to work with angles in radians
NEXT STEPS
  • Study the derivation of trigonometric identities
  • Explore the properties of periodic functions
  • Learn about the implications of constant functions in calculus
  • Investigate advanced topics in trigonometric transformations
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced trigonometry and its applications in calculus and analytical geometry.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sin^2(x+a)+\sin^2(x+b)-2\cos (a-b)\sin (x+a)\sin (x+b)$ is a constant function of $x$.

It is not at all a hard challenge(Emo), but I am amazed at the beauty of this problem therefore the sharing of it with MHB's members.
 
Mathematics news on Phys.org
With $\alpha = x +a$ and $\beta = x + b$ the given expression reads:

\[\sin^2\alpha + \sin^2\beta - 2\cos (\alpha -\beta )\sin \alpha \sin \beta \\\\ =\sin^2\alpha + \sin^2\beta - 2 \left (\cos \alpha \cos \beta + \sin \alpha \sin \beta \right )\sin \alpha \sin \beta \\\\ =\sin^2\alpha + \sin^2\beta - 2 \sin^2 \alpha \sin^2 \beta - 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ =\sin^2\alpha - \sin^2 \alpha \sin^2 \beta+ \sin^2\beta - \sin^2 \alpha \sin^2 \beta - 2\cos \alpha \cos\beta \sin \alpha \sin \beta\\\\=\sin^2 \alpha(1-\sin^2 \beta) + \sin^2 \beta (1-\sin^2 \alpha )- 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ =\sin^2\alpha \cos^2\beta + \sin^2 \beta \cos^2 \alpha - 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ = \sin^2\alpha \cos^2\beta - \sin \alpha \cos \beta \sin \beta \cos \alpha+ \sin^2 \beta \cos^2 \alpha - \sin \beta \cos \alpha \sin \alpha \cos \beta \\\\ = \sin \alpha \cos \beta(\sin \alpha \cos \beta- \sin \beta\cos \alpha)+\sin \beta \cos \alpha(\sin \beta \cos \alpha-\sin \alpha \cos \beta)\\\\ =\sin \alpha \cos \beta(\sin \alpha \cos \beta- \sin \beta\cos \alpha)+\sin \beta \cos \alpha(\sin \beta \cos \alpha-\sin \alpha \cos \beta)\\\\ =\sin \alpha \cos \beta \sin(\alpha -\beta )- \sin(\alpha -\beta )\sin \beta \cos \alpha \\\\ =\sin (\alpha -\beta )(\sin \alpha \cos \beta - \sin \beta \cos \alpha )\\\\ = \sin^2(\alpha -\beta )\\\\ = \sin^2(a-b)\]

  • which is independent of $x$.
 
[TIKZ]\draw[thin] (0,0) circle (5cm);
\coordinate[label=left:A] (A) at (-5,0);
\coordinate[label=right:E] (E) at (5,0);
\coordinate[label=below:O] (O) at (0,0);
\draw (A) -- (O)-- (E);
\coordinate[label=left: D] (D) at (-4.33,2.5);
\coordinate[label=left: C] (C) at (-2.5,4.33);
\draw (A) -- (D)-- (E);
\draw (A) -- (C)-- (E);
\draw (D)-- (C);
\coordinate[label=right: B] (B) at (4.1,2.87);
\draw (A)-- (B);
\node (1) [font=\small,blue] at (-3.6,0.26) {$x$};
\node (2) [font=\small,orange] at (-4.3,0.65) {$\beta$};
\node (3) [font=\small,purple] at (-4.2,1.5) {$\alpha - \beta$};
\node (4) [font=\small,purple] at (3.0,1.1) {$\alpha - \beta$};
\node (5) [font=\small,teal] at (-3.8,1.0) {$\alpha$};
\begin{scope}
\path[clip] (E) -- (A) -- (B) -- cycle;
\draw[thick,blue] (A) circle (0.98);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (C) -- cycle;
\draw[thick,orange] (A) circle (0.8);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (D) -- cycle;
\draw[thick,teal] (A) circle (1.2);
\end{scope}
\begin{scope}
\path[clip] (C) -- (A) -- (D) -- cycle;
\draw[thick,purple,double] (A) circle (1.38);
\end{scope}
\begin{scope}
\path[clip] (C) -- (E) -- (D) -- cycle;
\draw[thick,purple,double] (E) circle (1.18);
\end{scope}
[/TIKZ]

Draw a circle with diameter 1 unit and let $O$ be the center of the circle and $AE$ be the diameter of the circle.

Using Sine Rule on the right-angled triangles $EAD$ and $EAC$, we get the following:

$ED=\sin (x+\alpha)\\CE=\sin (x+\beta)$

Now, consider triangle $CED$. Applying the Cosine Rule, we get

$CD^2=ED^2+CE^2-2(ED CE)\cos (\alpha - \beta)=\sin^2 (x+\alpha)+\sin^2 (x+\beta)-2\sin (x+\alpha) \sin (x+\beta)\cos(\alpha-\beta)$

This completes the proof.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
8
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
3K