MHB Is this Trigonometric Expression a Constant Function of x?

Click For Summary
The expression $\sin^2(x+a)+\sin^2(x+b)-2\cos (a-b)\sin (x+a)\sin (x+b)$ is analyzed to determine if it is a constant function of x. Participants explore trigonometric identities and simplifications to prove the constancy of the expression. Key steps involve using the product-to-sum identities and properties of sine and cosine functions. The discussion emphasizes the importance of recognizing patterns in trigonometric functions to establish the result. Ultimately, the expression is shown to be independent of x, confirming it as a constant function.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sin^2(x+a)+\sin^2(x+b)-2\cos (a-b)\sin (x+a)\sin (x+b)$ is a constant function of $x$.

It is not at all a hard challenge(Emo), but I am amazed at the beauty of this problem therefore the sharing of it with MHB's members.
 
Mathematics news on Phys.org
With $\alpha = x +a$ and $\beta = x + b$ the given expression reads:

\[\sin^2\alpha + \sin^2\beta - 2\cos (\alpha -\beta )\sin \alpha \sin \beta \\\\ =\sin^2\alpha + \sin^2\beta - 2 \left (\cos \alpha \cos \beta + \sin \alpha \sin \beta \right )\sin \alpha \sin \beta \\\\ =\sin^2\alpha + \sin^2\beta - 2 \sin^2 \alpha \sin^2 \beta - 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ =\sin^2\alpha - \sin^2 \alpha \sin^2 \beta+ \sin^2\beta - \sin^2 \alpha \sin^2 \beta - 2\cos \alpha \cos\beta \sin \alpha \sin \beta\\\\=\sin^2 \alpha(1-\sin^2 \beta) + \sin^2 \beta (1-\sin^2 \alpha )- 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ =\sin^2\alpha \cos^2\beta + \sin^2 \beta \cos^2 \alpha - 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ = \sin^2\alpha \cos^2\beta - \sin \alpha \cos \beta \sin \beta \cos \alpha+ \sin^2 \beta \cos^2 \alpha - \sin \beta \cos \alpha \sin \alpha \cos \beta \\\\ = \sin \alpha \cos \beta(\sin \alpha \cos \beta- \sin \beta\cos \alpha)+\sin \beta \cos \alpha(\sin \beta \cos \alpha-\sin \alpha \cos \beta)\\\\ =\sin \alpha \cos \beta(\sin \alpha \cos \beta- \sin \beta\cos \alpha)+\sin \beta \cos \alpha(\sin \beta \cos \alpha-\sin \alpha \cos \beta)\\\\ =\sin \alpha \cos \beta \sin(\alpha -\beta )- \sin(\alpha -\beta )\sin \beta \cos \alpha \\\\ =\sin (\alpha -\beta )(\sin \alpha \cos \beta - \sin \beta \cos \alpha )\\\\ = \sin^2(\alpha -\beta )\\\\ = \sin^2(a-b)\]

  • which is independent of $x$.
 
[TIKZ]\draw[thin] (0,0) circle (5cm);
\coordinate[label=left:A] (A) at (-5,0);
\coordinate[label=right:E] (E) at (5,0);
\coordinate[label=below:O] (O) at (0,0);
\draw (A) -- (O)-- (E);
\coordinate[label=left: D] (D) at (-4.33,2.5);
\coordinate[label=left: C] (C) at (-2.5,4.33);
\draw (A) -- (D)-- (E);
\draw (A) -- (C)-- (E);
\draw (D)-- (C);
\coordinate[label=right: B] (B) at (4.1,2.87);
\draw (A)-- (B);
\node (1) [font=\small,blue] at (-3.6,0.26) {$x$};
\node (2) [font=\small,orange] at (-4.3,0.65) {$\beta$};
\node (3) [font=\small,purple] at (-4.2,1.5) {$\alpha - \beta$};
\node (4) [font=\small,purple] at (3.0,1.1) {$\alpha - \beta$};
\node (5) [font=\small,teal] at (-3.8,1.0) {$\alpha$};
\begin{scope}
\path[clip] (E) -- (A) -- (B) -- cycle;
\draw[thick,blue] (A) circle (0.98);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (C) -- cycle;
\draw[thick,orange] (A) circle (0.8);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (D) -- cycle;
\draw[thick,teal] (A) circle (1.2);
\end{scope}
\begin{scope}
\path[clip] (C) -- (A) -- (D) -- cycle;
\draw[thick,purple,double] (A) circle (1.38);
\end{scope}
\begin{scope}
\path[clip] (C) -- (E) -- (D) -- cycle;
\draw[thick,purple,double] (E) circle (1.18);
\end{scope}
[/TIKZ]

Draw a circle with diameter 1 unit and let $O$ be the center of the circle and $AE$ be the diameter of the circle.

Using Sine Rule on the right-angled triangles $EAD$ and $EAC$, we get the following:

$ED=\sin (x+\alpha)\\CE=\sin (x+\beta)$

Now, consider triangle $CED$. Applying the Cosine Rule, we get

$CD^2=ED^2+CE^2-2(ED CE)\cos (\alpha - \beta)=\sin^2 (x+\alpha)+\sin^2 (x+\beta)-2\sin (x+\alpha) \sin (x+\beta)\cos(\alpha-\beta)$

This completes the proof.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K