MHB Is this Trigonometric Expression a Constant Function of x?

Click For Summary
The expression $\sin^2(x+a)+\sin^2(x+b)-2\cos (a-b)\sin (x+a)\sin (x+b)$ is analyzed to determine if it is a constant function of x. Participants explore trigonometric identities and simplifications to prove the constancy of the expression. Key steps involve using the product-to-sum identities and properties of sine and cosine functions. The discussion emphasizes the importance of recognizing patterns in trigonometric functions to establish the result. Ultimately, the expression is shown to be independent of x, confirming it as a constant function.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sin^2(x+a)+\sin^2(x+b)-2\cos (a-b)\sin (x+a)\sin (x+b)$ is a constant function of $x$.

It is not at all a hard challenge(Emo), but I am amazed at the beauty of this problem therefore the sharing of it with MHB's members.
 
Mathematics news on Phys.org
With $\alpha = x +a$ and $\beta = x + b$ the given expression reads:

\[\sin^2\alpha + \sin^2\beta - 2\cos (\alpha -\beta )\sin \alpha \sin \beta \\\\ =\sin^2\alpha + \sin^2\beta - 2 \left (\cos \alpha \cos \beta + \sin \alpha \sin \beta \right )\sin \alpha \sin \beta \\\\ =\sin^2\alpha + \sin^2\beta - 2 \sin^2 \alpha \sin^2 \beta - 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ =\sin^2\alpha - \sin^2 \alpha \sin^2 \beta+ \sin^2\beta - \sin^2 \alpha \sin^2 \beta - 2\cos \alpha \cos\beta \sin \alpha \sin \beta\\\\=\sin^2 \alpha(1-\sin^2 \beta) + \sin^2 \beta (1-\sin^2 \alpha )- 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ =\sin^2\alpha \cos^2\beta + \sin^2 \beta \cos^2 \alpha - 2\cos \alpha \cos\beta \sin \alpha \sin \beta \\\\ = \sin^2\alpha \cos^2\beta - \sin \alpha \cos \beta \sin \beta \cos \alpha+ \sin^2 \beta \cos^2 \alpha - \sin \beta \cos \alpha \sin \alpha \cos \beta \\\\ = \sin \alpha \cos \beta(\sin \alpha \cos \beta- \sin \beta\cos \alpha)+\sin \beta \cos \alpha(\sin \beta \cos \alpha-\sin \alpha \cos \beta)\\\\ =\sin \alpha \cos \beta(\sin \alpha \cos \beta- \sin \beta\cos \alpha)+\sin \beta \cos \alpha(\sin \beta \cos \alpha-\sin \alpha \cos \beta)\\\\ =\sin \alpha \cos \beta \sin(\alpha -\beta )- \sin(\alpha -\beta )\sin \beta \cos \alpha \\\\ =\sin (\alpha -\beta )(\sin \alpha \cos \beta - \sin \beta \cos \alpha )\\\\ = \sin^2(\alpha -\beta )\\\\ = \sin^2(a-b)\]

  • which is independent of $x$.
 
[TIKZ]\draw[thin] (0,0) circle (5cm);
\coordinate[label=left:A] (A) at (-5,0);
\coordinate[label=right:E] (E) at (5,0);
\coordinate[label=below:O] (O) at (0,0);
\draw (A) -- (O)-- (E);
\coordinate[label=left: D] (D) at (-4.33,2.5);
\coordinate[label=left: C] (C) at (-2.5,4.33);
\draw (A) -- (D)-- (E);
\draw (A) -- (C)-- (E);
\draw (D)-- (C);
\coordinate[label=right: B] (B) at (4.1,2.87);
\draw (A)-- (B);
\node (1) [font=\small,blue] at (-3.6,0.26) {$x$};
\node (2) [font=\small,orange] at (-4.3,0.65) {$\beta$};
\node (3) [font=\small,purple] at (-4.2,1.5) {$\alpha - \beta$};
\node (4) [font=\small,purple] at (3.0,1.1) {$\alpha - \beta$};
\node (5) [font=\small,teal] at (-3.8,1.0) {$\alpha$};
\begin{scope}
\path[clip] (E) -- (A) -- (B) -- cycle;
\draw[thick,blue] (A) circle (0.98);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (C) -- cycle;
\draw[thick,orange] (A) circle (0.8);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (D) -- cycle;
\draw[thick,teal] (A) circle (1.2);
\end{scope}
\begin{scope}
\path[clip] (C) -- (A) -- (D) -- cycle;
\draw[thick,purple,double] (A) circle (1.38);
\end{scope}
\begin{scope}
\path[clip] (C) -- (E) -- (D) -- cycle;
\draw[thick,purple,double] (E) circle (1.18);
\end{scope}
[/TIKZ]

Draw a circle with diameter 1 unit and let $O$ be the center of the circle and $AE$ be the diameter of the circle.

Using Sine Rule on the right-angled triangles $EAD$ and $EAC$, we get the following:

$ED=\sin (x+\alpha)\\CE=\sin (x+\beta)$

Now, consider triangle $CED$. Applying the Cosine Rule, we get

$CD^2=ED^2+CE^2-2(ED CE)\cos (\alpha - \beta)=\sin^2 (x+\alpha)+\sin^2 (x+\beta)-2\sin (x+\alpha) \sin (x+\beta)\cos(\alpha-\beta)$

This completes the proof.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K