[TIKZ]\draw[thin] (0,0) circle (5cm);
\coordinate[label=left:A] (A) at (-5,0);
\coordinate[label=right:E] (E) at (5,0);
\coordinate[label=below:O] (O) at (0,0);
\draw (A) -- (O)-- (E);
\coordinate[label=left: D] (D) at (-4.33,2.5);
\coordinate[label=left: C] (C) at (-2.5,4.33);
\draw (A) -- (D)-- (E);
\draw (A) -- (C)-- (E);
\draw (D)-- (C);
\coordinate[label=right: B] (B) at (4.1,2.87);
\draw (A)-- (B);
\node (1) [font=\small,blue] at (-3.6,0.26) {$x$};
\node (2) [font=\small,orange] at (-4.3,0.65) {$\beta$};
\node (3) [font=\small,purple] at (-4.2,1.5) {$\alpha - \beta$};
\node (4) [font=\small,purple] at (3.0,1.1) {$\alpha - \beta$};
\node (5) [font=\small,teal] at (-3.8,1.0) {$\alpha$};
\begin{scope}
\path[clip] (E) -- (A) -- (B) -- cycle;
\draw[thick,blue] (A) circle (0.98);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (C) -- cycle;
\draw[thick,orange] (A) circle (0.8);
\end{scope}
\begin{scope}
\path[clip] (B) -- (A) -- (D) -- cycle;
\draw[thick,teal] (A) circle (1.2);
\end{scope}
\begin{scope}
\path[clip] (C) -- (A) -- (D) -- cycle;
\draw[thick,purple,double] (A) circle (1.38);
\end{scope}
\begin{scope}
\path[clip] (C) -- (E) -- (D) -- cycle;
\draw[thick,purple,double] (E) circle (1.18);
\end{scope}
[/TIKZ]
Draw a circle with diameter 1 unit and let $O$ be the center of the circle and $AE$ be the diameter of the circle.
Using Sine Rule on the right-angled triangles $EAD$ and $EAC$, we get the following:
$ED=\sin (x+\alpha)\\CE=\sin (x+\beta)$
Now, consider triangle $CED$. Applying the Cosine Rule, we get
$CD^2=ED^2+CE^2-2(ED CE)\cos (\alpha - \beta)=\sin^2 (x+\alpha)+\sin^2 (x+\beta)-2\sin (x+\alpha) \sin (x+\beta)\cos(\alpha-\beta)$
This completes the proof.