yungman
- 5,741
- 291
I have two questions:
(1)As the tittle, if u(a,\theta,t)=0, is
\frac{\partial{u}}{\partial {t}}=\frac{\partial^2{u}}{\partial {r}^2}+\frac{1}{r}\frac{\partial{u}}{\partial {r}}+\frac{1}{r^2}\frac{\partial^2{u}}{\partial {\theta}^2}
and
\frac{\partial^2{u}}{\partial {t}^2}=\frac{\partial^2{u}}{\partial {r}^2}+\frac{1}{r}\frac{\partial{u}}{\partial {r}}+\frac{1}{r^2}\frac{\partial^2{u}}{\partial {\theta}^2}
Just Poisson Equation
\nabla^2u=h(r,\theta,t)
Where
h(r,\theta,t)=\frac{\partial{u}}{\partial {t}}\;\hbox { or }\;h(r,\theta,t)=\frac{\partial^2{u}}{\partial {t}^2}\;\hbox{ respectively.}(2)AND if u(a,\theta,t)=f(r,\theta,t), then we have to use superposition of Poisson with zero boundary plus Dirichlet with u(a,\theta,t)=f(r,\theta,t)?
That is
u(r,\theta,t)=u_1+u_2
where
\nabla^2u_1=h(r,\theta,t)\;\hbox { with }\;u(a,\theta,t)=0
and
\nabla^2u_2=0\;\hbox { with }\;u(a,\theta,t)=f(r,\theta,t)
Thanks
(1)As the tittle, if u(a,\theta,t)=0, is
\frac{\partial{u}}{\partial {t}}=\frac{\partial^2{u}}{\partial {r}^2}+\frac{1}{r}\frac{\partial{u}}{\partial {r}}+\frac{1}{r^2}\frac{\partial^2{u}}{\partial {\theta}^2}
and
\frac{\partial^2{u}}{\partial {t}^2}=\frac{\partial^2{u}}{\partial {r}^2}+\frac{1}{r}\frac{\partial{u}}{\partial {r}}+\frac{1}{r^2}\frac{\partial^2{u}}{\partial {\theta}^2}
Just Poisson Equation
\nabla^2u=h(r,\theta,t)
Where
h(r,\theta,t)=\frac{\partial{u}}{\partial {t}}\;\hbox { or }\;h(r,\theta,t)=\frac{\partial^2{u}}{\partial {t}^2}\;\hbox{ respectively.}(2)AND if u(a,\theta,t)=f(r,\theta,t), then we have to use superposition of Poisson with zero boundary plus Dirichlet with u(a,\theta,t)=f(r,\theta,t)?
That is
u(r,\theta,t)=u_1+u_2
where
\nabla^2u_1=h(r,\theta,t)\;\hbox { with }\;u(a,\theta,t)=0
and
\nabla^2u_2=0\;\hbox { with }\;u(a,\theta,t)=f(r,\theta,t)
Thanks
Last edited: