B Is Z0 Particle Real Without Flavor-Changing Interactions?

Click For Summary
The discussion centers on the existence of the Z0 particle and its detection without flavor-changing interactions. It is clarified that the Z0 can still be identified through its decay into particle-antiparticle pairs, despite the absence of flavor-changing interactions. The cleanest method to produce a Z0 particle is by colliding electrons and positrons at the Z0 resonance. Charge conservation is emphasized, as the Z0 boson carries no charge. Ultimately, flavor-conserving interactions are sufficient for confirming the Z0's existence in experiments.
AdvaitDhingra
Messages
51
Reaction score
22
If there are no flavor changing z0 weak interactions, how do we even know that the particle exists? I thought that we could only tell which particle was exchanged by the particles it decays into. Is this wrong?
 
Physics news on Phys.org
How would the absence of flavour changing Z0 interactions preclude the knowledge of its existence? You will still see the decays to particle-antiparticle pairs just the same. The cleanest way of producing Z0 is to collide electrons with positrons at the Z0 resonance.
 
  • Like
Likes ohwilleke, vanhees71, Vanadium 50 and 1 other person
Orodruin said:
How would the absence of flavour changing Z0 interactions preclude the knowledge of its existence? You will still see the decays to particle-antiparticle pairs just the same. The cleanest way of producing Z0 is to collide electrons with positrons at the Z0 resonance.
Oh ok. So a z0 Boson interaction is one where charge is conserved? (since the z0 carries no charge)
 
Do you see a peak (Z) or not (no Z)?

1618312813823.png
 
  • Like
Likes ohwilleke, vanhees71 and AdvaitDhingra
Charge is always conserved.

Flavor-changing Z interactions would allow e.g. electron plus antimuon to Z, or Z to these two particles. We don't observe that decay (experimental upper limit is ~10-6), but of course we see the flavor-conserving electron+positron->Z production (that's what we can actually collide in colliders) and the equally flavor-conserving decays to quark plus matching antiquark.
 
Theoretical physicist C.N. Yang died at the age of 103 years on October 18, 2025. He is the Yang in Yang-Mills theory, which he and his collaborators devised in 1953, which is a generic quantum field theory that is used by scientists to study amplitudes (i.e. vector probabilities) that are foundational in all Standard Model processes and most quantum gravity theories. He also won a Nobel prize in 1957 for his work on CP violation. (I didn't see the post in General Discussions at PF on his...

Similar threads

Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
23
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K