I Isomorphisms between C4 & Z4 Groups

  • I
  • Thread starter Thread starter JackNicholson
  • Start date Start date
  • Tags Tags
    Groups Rotations
JackNicholson
Messages
1
Reaction score
1
0

Hint: Show that the isomorphism preserves the order of the element

My solution:

C4 = {e,r,r^2,r^3} where e-identity element and r is rotation by 90°

Z4 = {0,1,2,3}

LEMMA:
! Isomorphism preserves the order of the element !
(PROOF OF IT)Now we calcuate the order of the elements of both groups.

ord(e)=1 -------------- ord(0)=1

ord(r)=4 -------------- ord(1)=4

ord(r^2)=2 ----------- ord(2)=2

ord(r^3)=4 ----------- ord(3)=4

We see that there is 1 element in both groups with order equal 1, 2 elements with order equal 4 and 1 element with order equal 2.

So we can write 2 mappings:

ψ : C4 -> Z4

ψ(e)=0

ψ(r)=1

ψ(r^2)=2

ψ(r^3)=3

ϕ: C4 -> Z4

ϕ(e)=0

ϕ(r)=3

ϕ(r^2)=2

ϕ(r^3)=1

We can see it clearly that those mapping are bijective.And now how show that those 2 functions are also homomorphism? I know that homomorphism is when: ϕ(xy)=ϕ(x) + ϕ(y) but how show it in this certain case without writing every possible situation?
 
Physics news on Phys.org
You can write your mappings more easily as \psi^{-1}(n) = r^{n} and \phi^{-1}(n) = r^{-n}.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top