I Isomorphisms between C4 & Z4 Groups

  • I
  • Thread starter Thread starter JackNicholson
  • Start date Start date
  • Tags Tags
    Groups Rotations
JackNicholson
Messages
1
Reaction score
1
0

Hint: Show that the isomorphism preserves the order of the element

My solution:

C4 = {e,r,r^2,r^3} where e-identity element and r is rotation by 90°

Z4 = {0,1,2,3}

LEMMA:
! Isomorphism preserves the order of the element !
(PROOF OF IT)Now we calcuate the order of the elements of both groups.

ord(e)=1 -------------- ord(0)=1

ord(r)=4 -------------- ord(1)=4

ord(r^2)=2 ----------- ord(2)=2

ord(r^3)=4 ----------- ord(3)=4

We see that there is 1 element in both groups with order equal 1, 2 elements with order equal 4 and 1 element with order equal 2.

So we can write 2 mappings:

ψ : C4 -> Z4

ψ(e)=0

ψ(r)=1

ψ(r^2)=2

ψ(r^3)=3

ϕ: C4 -> Z4

ϕ(e)=0

ϕ(r)=3

ϕ(r^2)=2

ϕ(r^3)=1

We can see it clearly that those mapping are bijective.And now how show that those 2 functions are also homomorphism? I know that homomorphism is when: ϕ(xy)=ϕ(x) + ϕ(y) but how show it in this certain case without writing every possible situation?
 
Physics news on Phys.org
You can write your mappings more easily as \psi^{-1}(n) = r^{n} and \phi^{-1}(n) = r^{-n}.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top